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Abstract

We consider a new perspective on dialog
state tracking (DST), the task of estimating
a user’s goal through the course of a dialog.
By formulating DST as a semantic parsing
task over hierarchical representations, we can
incorporate semantic compositionality, cross-
domain knowledge sharing and co-reference.
We present TreeDST, a dataset of 27k
conversations annotated with tree-structured
dialog states and system acts.1 We describe
an encoder-decoder framework for DST with
hierarchical representations, which leads to
20% improvement over state-of-the-art DST
approaches that operate on a flat meaning
space of slot-value pairs.

1 Introduction

Task-based dialog systems, for example digital
personal assistants, provide a linguistic user
interface for all kinds of applications: from
searching a database, booking a hotel, checking
the weather to sending a text message. In order
to understand the user, the system must be able to
both parse the meaning of an utterance and relate it
to the context of the conversation so far. While
lacking the richness of a conversation between
two humans, the dynamics of human-machine
interaction can still be complex: the user may
change their mind, correct a misunderstanding or
refer back to previously-mentioned information.

Language understanding for task-based dialog
is often termed “dialog state tracking” (DST)
(Williams et al., 2016), the mental model being
that the intent of the user is a partially-observed
state that must be re-estimated at every turn given
new information. The dialog state is typically
modelled as a set of independent slots, and a
standard DST system will maintain a distribution

1The dataset is available at https://github.com/
apple/ml-tree-dst.

over values for each slot. In contrast, language
understanding for other NLP applications is often
formulated as semantic parsing, which is the task
of converting a single-turn utterance to a graph-
structured meaning representation. Such meaning
representations include logical forms, database
queries and other programming languages.

These two perspectives on language
understanding—DST and semantic parsing—
have complementary strengths and weaknesses.
DST targets a fuller range of conversational
dynamics but typically uses a simple and limiting
meaning representation. Semantic parsing
embraces a compositional view of meaning. By
basing meaning on a space of combinable, reusable
parts, compositionality can make the NLU problem
space more tractable (repeated concepts must only
be learned once) and more expressive (it becomes
possible to represent nested intents). At the same
time, most semantic parsing research treats a
sentence as an isolated observation, detached from
conversational context.

This work unifies the two perspectives by
reformulating DST as conversational semantic
parsing. As in DST, the task is to track a
user’s goal as it accumulates over the course of
a conversation. The goal is represented using a
structured formalism like those used in semantic
parsing. Specifically, we adopt a hierarchical
representation which captures domains, verbs,
operators and slots within a rooted graph grounded
to an ontology. The structured dialog state is
capable of tracking nested intents and representing
compositions in a single graph (Turn 5 Table
1). The formalism also naturally supports cross-
domain slot sharing and cross-turn co-reference
through incorporating the shared slots or the
references as sub-graphs in the representation (Turn
3 Table 1).

Using a reverse annotation approach inspired

https://github.com/apple/ml-tree-dst
https://github.com/apple/ml-tree-dst
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Turn Utterance and Annotation

1

Hi can you book me a flight to Paris please.
user.flight.book.object.equals
.destination.equals.location.equals.Paris

Sure, when and where will you depart?
system.prompt.flight.book.object.equals
.source
.departureDateTime

2

Tomorrow from London
user.flight.book.object.equals
.destination.equals.location.equals.Paris
.source.equals.location.equals.London
.departureDateTime.equals
.date.equals.definedValue.equals.Tomorrow

I found 5 flights for you. The earliest one departs
at 10 AM with a cost of £105. Would you like it?
system
.prompt.flight.book.object.equals
.departureDateTime.equals.time

.inform.flight.find
.count.equals.5
.object.equals
.departureDateTime.equals.time.equals
.hour.equals.10
.meridiem.equals.AM

.price.equals.105

3

Do I have any calendar event on that day?
user.calendarEvent.checkExistence.object.equals
.dateTimeRange.equals
.date.equals.definedValue.equals.Tomorrow

No you don’t have any event.
system.inform.calendarEvent.find.notExisted

4

I would book the 10 AM flight for me please
user.flight.book.object.equals
.destination.equals.location.equals.Paris
.source.equals.location.equals.London
.departureDateTime.equals
.date.equals.definedValue.equals.Tomorrow
.time.equals
.hour.equals.10
.meridiem.equals.AM

Here is your booking information. Please confirm.
system.offer.flight.book

5

Direction to my next meeting.
user.navigation.find.object.equals
.destination.equals.reference
.calendarEvent.object.equals
.listOffset.equals.1

Here is the direction to your meeting at the
GlassHouse.
system
.navigation.inform.find
.calendarEvent.inform.find.object.equals
.location.equals.GlassHouse

Table 1: An example conversation in TreeDST with
annotations. User and system utterances are marked
in red and blue respectively. We use dot to represent
tree edges and increased indentation levels to reveal
multiple children attached to the same parent node. A
side-by-side comparison between a dotted tree and its
full drawing can be found in Appendix A.

by Shah et al. (2018) and Rastogi et al.
(2019), we have collected a large dataset of
task-oriented dialogs annotated with hierarchical
meaning representations. Each dialog was
generated through a two-step process. First, a
generative dialog simulator produces a meaningful
conversational flow and a template-based utterance
for each turn in the conversation. Then the
utterances are paraphrased by human annotators

to render more realistic and natural conversations.
The resulting dataset, which we call TreeDST,
covers 27k conversations across 10 domains.
Conversations in TreeDST are non-linear: they
contain glitches which represent system failures
and uncooperative user behaviors such as under-
and over-specifying slot information. There are
also use cases not addressed in existing slot-filling
datasets, including compositional intents and multi-
intent utterances.

The second contribution of this work is a
conversational semantic parser that tackles DST
as a graph generation problem. At each turn,
the model encodes the current user utterance and
representations of dialog history, based upon which
the decoder generates the updated dialog state with
a mixture of generation and copy mechanism. In
order to track practical conversations with intent
switching and resumption (Lee and Stent, 2016;
El Asri et al., 2017), we adopt a stack (Rudnicky
and Xu, 1999) to represent multiple tasks in the
dialog history, and a parent-pointer decoder to
speed up decoding. We conducted controlled
experiments to factor out the impact of hierarchical
representations from model architectures. Overall
our approach leads to 20% improvement over state-
of-the-art DST approaches that operate on a flat
meaning space.

2 Related Work

Modeling Traditional DST models apply
discriminative classifiers over the space of
slot-value combinations (Crook and Lemon, 2010;
Henderson et al., 2014b; Williams et al., 2016).
These models require feature extraction from user
utterances based on manually constructed semantic
dictionaries, making them vulnerable to language
variations. Neural classification models (Mrkšić
et al., 2017; Mrkšić and Vulić, 2018) alleviate the
problem by learning distributed representations of
user utterances. However, they still lack scalability
to large unbounded output space (Xu and Hu, 2018;
Lee et al., 2019) and structured representations. To
address the limitations, some recent work treats
slot filling as a sequence generation task (Ren
et al., 2019; Wu et al., 2019).

On the other hand, single-turn semantic parsers
have long used structured meaning representations
to address compositionality (Liang et al., 2013;
Banarescu et al., 2013; Kollar et al., 2018; Yu
et al., 2018; Gupta et al., 2018). Solutions range
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from chart-based constituency parsers (Berant et al.,
2013) to more recent neural sequence-to-sequence
models (Jia and Liang, 2016). The general
challenge of scaling semantic parsing to DST is that
dialog state, as an accumulation of conversation
history, requires expensive context-dependent
annotation. It is also unclear how utterance
semantics can be aggregated and maintained in a
structured way. In this work we provide a solution
to unify DST with semantic parsing.

Data Collection The most straightforward
approach to building datasets for task-oriented
dialog is to directly annotate human-system
conversations (Williams et al., 2016). A limitation
is that the approach requires a working system
at hand, which causes a classic chicken-and-egg
problem for improving user experience. The
issue can be avoided with Wizard-of-Oz (WoZ)
experiments to collect human-human conversations
(El Asri et al., 2017; Budzianowski et al., 2018;
Peskov et al., 2019; Byrne et al., 2019; Radlinski
et al., 2019). However, dialog state annotation
remains challenging and costly in WoZ, and the
resulting distribution could be different from that
of human-machine conversations (Budzianowski
et al., 2018). One approach that avoids direct
meaning annotation is to use a dialog simulator
(Schatzmann et al., 2007; Li et al., 2016). Recently,
Shah et al. (2018) and Rastogi et al. (2019)
generate synthetic conversations which are
subsequently paraphrased by crowdsourcing. This
approach has been proven to provide a better
coverage while reducing the error and cost of
dialog state annotation (Rastogi et al., 2019). We
adopt a similar approach in our work, but focusing
on a structured meaning space.

3 Setup

3.1 Problem Statement

We use the following notions throughout the
paper. A conversation X has representation Y
grounded to an ontology K: at turn t, every
user utterance xut is annotated with a user dialog
state yut , which represents an accumulated user
goal up to the time step t. Meanwhile, every
system utterance xst is annotated with a system
dialog act yst , which represents the system action
in response to yut . Both yut and yst adopt the
same structured semantic formalism to encourage
knowledge sharing between the user and the system.

From the perspective of the system, yst is observed
(the system knows what it has just said) and yut
must be inferred from the user’s utterance. For
the continuation of an existing goal, the old dialog
state will keep being updated; however, when the
user proposes a completely new goal during the
conversation, a new dialog state will overwrite the
old one. To track goal switching and resumption,
a stack is used to store non-accumulable dialog
states in the entire conversation history (in both
data simulation and dialog state tracking).

There are two missions of this work: 1) building
a conversational dataset with structured annotations
that can effectively represent the joint distribution
P (X,Y ); and 2) building a dialog state tracker
which estimates the conditional distribution of
every dialog state given the current user input and
dialog history P (yut |xut , X<t, Y<t).

3.2 Representation

We adopt a hierarchical and recursive semantic
representation for user dialog states and system
dialog acts. Every meaning is rooted at
either a user or system node to distinguish
between the two classes. Non-terminals of the
representation include domains, user verbs,
system actions, slots, and operators.
A domain is a group of activities such as
creation and deletion of calendar events. A
user verb represents the predicate of the user
intent sharable across domains, such as create,
delete, update, and find. A system
action represents a type of system dialog act
in response to a user intent. For example, the
system could prompt for a slot value; inform
the user about the information they asked for;
and confirm if an intent or slot is interpreted
correctly. Nested properties (e.g., time range) are
represented as a hierarchy of slot-operator-
argument triples, where the argument can
be either a sub-slot, a terminal value node or
a special reference node. The value node
accepts either a categorical label (e.g., day of
week) or an open value (e.g., content of text
message). The reference node allows a whole
intent to be attached as a slot value, enabling
the construction of cross-domain use cases (e.g.,
Turn 5 of Table 1). Meanwhile, co-reference
to single slots is directly achieved by subtree
copying (e.g., Turn 3 of Table 1). Finally,
conjunction is implicitly supported by allowing
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a set of arguments to be attached to the same slot.
Overall, the representation presented above focuses
on ungrounded utterance semantics to decouple
understanding from execution. By incorporating
domain-specific logic, the representation can be
mapped to executable programs at a later stage.

4 Data Elicitation

4.1 Overview

We sidestep the need for collecting real human-
system conversations and annotating them with
complex semantics by adopting a reverse data
elicitation approach (Shah et al., 2018; Rastogi
et al., 2019). We model the generative process
P (X,Y ) = P (Y )P (X|Y ), where representations
of conversation flows (Y ) are firstly rendered by
a dialog simulator, and then realised into natural
dialog (X) by annotators. Two central aspects
which directly impact the quality of the resulting
data are: (1) the dialog simulator which controls
the coverage and naturalness of the conversations;
(2) the annotation instructions and quality control
mechanism that ensures X and Y are semantically
aligned after annotation.

4.2 Simulator

The most common approach of simulating a
conversation flow is agenda-based (Schatzmann
et al., 2007; Li et al., 2016; Shah et al., 2018;
Rastogi et al., 2019). At the beginning of this
approach, a new goal is defined in the form of
slot-value pairs describing user’s requests and
constraints; and an agenda is constructed by
decomposing the user goal into a sequence of user
actions. Although the approach ensures the user
behaves in a goal-oriented manner, it constrains
the output space with pre-defined agendas, which
is hard to craft for complex user goals (Shi et al.,
2019).

Arguably, a more natural solution to dialog
simulation for complex output space is a fully
generative method. It complies with the behavior
that a real user may only have an initial goal at
the start of conversation, while the final dialog
state cannot be foreseen in advance. The whole
conversation can be defined generatively as follows:

P (Y ) = P (yu0 )
n∑

t=0

P (yst |yut )
n∑

t=1

P (yut |ys<t, y
u
<t)

(1)

where Y is the conversation flow, yut is the user
dialog state at turn t and yst the system dialog act.
The decomposed probability of P (Y ) captures the
functional space of dialog state transitions with
three components: 1) a module generating the
initial user goal P (yu0 ), 2) a module generating
system act P (yst |yut ), and 3) a module for user state
update based on the dialog history P (yut |ys<t, y

u
<t).

The conversation terminates at time step n which
must be a finishing state (system success or failure).

Initial intent module P (yu0 ) The dialog state
yu0 representing the initial user goal is generated
with a probabilistic tree substitution grammar
(Cohn et al., 2010, PTSG) based on our semantic
formalism. Non-terminal symbols in the PTSG
can rewrite entire tree fragments to encode non-
local context such as hierarchical and co-occurring
slot combinations. As explained in the example
below, the algorithm generates dialog states from
top down by recursively substituting non-terminals
(marked in green) with subtrees.

$createEvent →user.calendarEvent.create
. $newEvent

$newEvent →object.equals
. $attendees

. $location

This example generates a calendar event creation
intent that contains two slots of attendees and
location. In a statistical approach, the sampling
probability of each production rule could be learned
from dialog data. For the purpose of bootstrapping
a new model, any prior distribution can be applied.

Response module P (yst |yut ) At turn t, the
system act yst is generated based on the current
user dialog state yut and domain-specific logic.
We represent the probability P (yst |yut ) with a
probabilistic tree transformation grammar, which
captures how an output tree (yst ) is generated from
the input (yut ) through a mixture of generation and a
copy mechanism. As shown in the example below,
every production rule in the grammar is in the
form A → B, where A is an input pattern that
could contain both observed nodes and unobserved
nodes (marked in red), and B is an output pattern
to generate.
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user.calendarEvent.create
.object.equals

. -dateTimeRangey
system.prompt.calendarEvent

.create.object.equals
.dateTimeRange

Given a user dialog state, the simulator looks
up production rules which result in a match of
pattern A, and then derives a system act based
on the pattern B. Like in PTSG, probabilities of
transformations can be either learned from data or
specified a priori.

State update module P (yut |ys<t, y
u
<t) The

generation of the updated dialog state is dependent
on the dialog history. While the full space of yut is
unbounded, we focus on simulating three common
types of updates, where a user introduces a new
goal, continues with the previous goal yut−1, or
resumes an earlier unfinished goal (see Turn 2-4
of Table 1 for examples, respectively). To model
dialog history, we introduce an empty stack when
the conversation starts. A dialog state and the
rendered system act are pushed onto the stack
upon generation, dynamically updated during the
conversation, and popped from the stack upon task
completion. Therefore, the top of the stack always
represents the most recent unfinished task ytop,ut−1

and the corresponding system act ytop,st−1 .
We consider the top elements of the stack as

the effective dialog history and use it to generate
the next dialog state yut . The generation interface
is modeled with a similar tree transformation
grammar, but every production rule has two inputs
in the form A,B → C:

user.calendarEvent.create
.object.equals

. -dateTimeRange

system.prompt.calendarEvent
.create.object.equals
.dateTimeRangey

user .calendarEvent.create
.object.equals

. $dateTimeRange

where A specifies a matching pattern of the user
goal ytop,ut−1 , B is a matching pattern of the system
act ytop,st−1 , and C is an output pattern that represents
how the updated dialog state is obtained through a
mixture of grammar expansion (marked in green)
and copy mechanism from either of the two sources
(marked in yellow).

4.3 Annotation

Following Shah et al. (2018); Rastogi et al.
(2019), every grammar production in the simulator
is paired with a template whose slots are
synchronously expanded. As a result, each
dialog state or system act is associated with
a template utterance. The purpose is to offer
minimum understandability to each conversation
flow, based on which annotators will generate
natural conversations.

Instructions Annotators generate a conversation
based on the given templated utterances. The
task proceeds turn by turn. For each turn, we
instruct annotators to convey exactly the same
intents and slots in each user or system utterance,
in order to make sure the obtained utterance
agrees with the programmatically generated
semantic annotation. The set of open values
(specially marked in brackets, such as event
titles and text messages) must be preserved
too. Besides the above restrictions, we give
annotators the freedom to generate an utterance
with paraphrasing, compression and expansion in
the given dialog context, to make conversations
as natural as possible. While system utterances
are guided to be expressed in a professional
tone, we encourage annotators to introduce
adequate syntactic variations and chit-chats in user
utterances as long as they do not change the intent
to be delivered.

Quality control We enforce two quality control
mechanisms before and after the dialog rendering
task. Before the task, we ask annotators to provide
a binary label to each conversation flow. The
label indicates if the conversation contains any non-
realistic interactions. We can therefore filter out
low-quality data outputted by the simulator. After
the task, we ask a different batch of annotators
to evaluate if each human-generated utterance
preserves the meaning of the templated utterance;
any conversation that fails this check is removed.

4.4 Statistics

The resulting TreeDST dataset consists of 10
domains: flight, train, hotel, restaurant, taxi,
calendar, message, reminder, navigation, and
phone, exhibiting nested properties for people,
time, and location that are shared across domains.
Table 2 shows a comparison of TreeDST with the
following pertinent datasets, DSTC2 (Henderson
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DSTC2 WOZ2.0 FRAMES M2M MultiWOZ SGD TreeDST
Representation Flat Hierarchical
#Dialogs 1,612 600 1,369 1,500 8,438 16,142 27,280
Total #turns 23,354 4,472 19,986 14,796 113,556 329,964 167,507
Avg. #turns/dialog 14.5 7.45 14.60 9.86 13.46 20.44 7.14
Avg. #tokens/utterance 8.54 11.24 11.24 8.24 13.13 9.75 7.59
#slots 8 4 61 13 24 214 287
#values 212 99 3,871 138 4,510 14,139 20,612
#multi-domain dialog - - - - 7,032 16,142 14,999
#compositional utterance - - - - - - 10,133
#cross-turn co-reference - - - - - - 9,609

Table 2: Comparison of TreeDST with pertinent datasets for task-oriented dialogue.

et al., 2014a), WOZ2.0 (Wen et al., 2017),
FRAMES (El Asri et al., 2017), M2M (Shah et al.,
2018), MultiWOZ (Budzianowski et al., 2018)
and SGD (Rastogi et al., 2019). Similar to our
work, both M2M and SGD use a simulator to
generate conversation flows; and both MultiWOZ
and SGD contain multi-domain conversations. The
difference is that all the previous work represents
dialog states as flat slot-value pairs, which are
not able to capture complex relations such as
compositional intents.

5 Dialog State Tracking

The objective in the conversational semantic
parsing task is to predict the updated dialog state
at each turn given the current user input and
dialog history P (yut |xut , X<t, Y<t). We tackle the
problem with an encoder-decoder model: at turn
t, the model encodes the current user utterance
xut and dialog history, conditioned on which the
decoder predicts the target dialog state yut . We call
this model the Tree Encoder-Decoder, or TED.

Dialog history When a dialog session involves
task switching, there will be multiple, non-
accumulable dialog states in the conversation
history. Since it is expensive to encode
the entire history X<t, Y<t whose size grows
with the conversation, we compute a fixed-size
history representation derived from the previous
conversation flow (Y<t). Specifically, we reuse
the notation of a stack to store past dialog states,
and the top of the stack ytop,ut−1 tracks the most
recent uncompleted task. The dialog history is
then represented with the previous dialog state yut−1,
the dialog state on top of the stack ytop,ut−1 , and the
previous system dialog act yst−1. We merge the two
dialog states yut−1 and ytop,ut−1 into a single tree Y u

t−1

for featurization.

Encoding We adopt three encoders for utterance
xut , system act yst−1 and dialog state Y u

t−1

respectively. For the user utterance xut , a
bidirectional LSTM encoder is used to convert
the word sequence into an embedding list Hx =
[hx

1,h
x
2, · · · ,hx

n], where n is the length of the word
sequence. For both the previous system act yst−1

and user state Y u
t−1, we linearize them into strings

through depth-first traversal (see Figure 1). Then
the linearized yst−1 and Y u

t−1 are encoded with
two separate bidirectional LSTMs. The outputs
are two embedding lists: Hs = [hs

1,h
s
2, · · · ,hs

m]
where m is the length of the linearized system act
sequence, and Hu = [hu

1 ,h
u
2 , · · · ,hu

l ] where l is
the length of the linearized dialog state sequence.
The final outputs of encoding are Hx, Hs and Hu.

Decoding After encoding, the next dialog state
yut is generated with an LSTM decoder as a
linearized string which captures the depth-first
traversal of the target graph (see Figure 1).

At decoding step i, the decoder feeds the
embedding of the previously generated token yut,i−1

and updates the decoder LSTM state to gi:

gi = LSTM(gi−1,y
u
t,i−1) (2)

An attention vector is computed between the state
gi and each of the three encoder outputs Hx, Hs

and Hu. For each of the encoder memory H, the
computation is defined as follows:

ai,j = attn(gi,H)

wi,j = softmax(ai,j)

h̄i =

n∑
j=1

wi,jhj

(3)

where attn represents the feed-forward attention
defined in Bahdanau et al. (2015) and the softmax
is taken over index j. By applying the attention
mechanism to all three sources, we get three
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Figure 1: An overview of the TED encoder-decoder architecture.

attention vectors h̄x
i , h̄s

i , and h̄u
i . The vectors are

concatenated together with the state gi to form a
feature vector fi, which is used to compute the
probability of the next token though a mixture of
generation and copy mechanism (Gu et al., 2016):

λ = σ(Wifi + bi)

Pgen = softmax(Wvfi + bv)

Pcopy = softmax(ai, ci, ei)

P (yut,i) = λPgen + (1− λ)Pcopy

(4)

where W and b are all model parameters. λ is a
soft gate controlling the proportion of generation
and copy. Pgen is computed with a softmax over the
generation vocabulary. a, c and e denote attention
logits computed for the three encoders. Since
there are three input sources, we concatenate all
logits and normalize them to compute the copy
distribution Pcopy. The model is optimised on the
log-likelihood of output distribution P (yut,i). An
overview of the model is shown in Figure 1.

5.1 Parent Pointer: a Faster Graph Decoder
One observation about the standard decoder is that
it has to predict long strings with closing brackets
to represent a tree structure in the linearization.
Therefore the total number of decoding LSTM
recursions is the number of tree nodes plus the
number of non-terminals. We propose a modified
parent pointer (PP) decoder which reduces the
number of autoregressions to the number of tree
nodes. This optimisation is not applicable only to
our DST model, but to any decoder that treats tree
decoding as sequence prediction in the spirit of
Vinyals et al. (2015).

The central idea of the PP decoder is that at each
decoding step, two predictions will be made: one
generates the next tree node, and the other selects
its parent from the existing tree nodes. Eventually
yut can be constructed from a list of tree nodes nut
and a list of parent relations rut . More specifically,
at time step i, the decoder takes in the embeddings

of the previous node nut,i−1 and its parent rut,i−1 to
generate the hidden state gi.

gi = LSTM(gi−1,n
u
t,i−1, r

u
t,i−1) (5)

This state is then used as as the input for two
prediction layers. The first layer predicts the next
node probability P (nut,i) with Equation 3 to 4, and
the second layer selects the parent of the node by
attending gi to the previously generated nodes,
which are represented with the decoder memory
Gi−1 = [g1, · · · ,gi−1]:

fi,j = attn(gi,Gi−1)

P (rut,i) = softmax(fi,j)
(6)

The model is optimised on the average negative
log-likelihood of distributions P (nut,i) and P (rut,i).

6 Experiments

Setup We split the TreeDST data into train
(19,808), test (3,739) and development (3,733)
sets. For evaluation, we measure turn-level dialog
state exact match accuracy averaged over all turns
in the test set. We evaluate the proposed model
with its “vanilla” decoder (TED-VANILLA) and its
parent-pointer variant (TED-PP). In both cases, the
utterance encoder has 2 layers of 500 dimensions;
the system act encoder and dialog state encoder
have 2 layers of 200 dimensions; and the decoder
has 2 LSTM layers of 500 dimensions. Dimensions
of word and tree node embeddings are 200 and
50 respectively. Training uses a batch size of
50 and Adam optimizer (Kingma and Ba, 2015).
Validation is performed every 2 epochs and the
training stops when the validation error does not
decrease in four consecutive evaluations. The
hyper-parameters were selected empirically based
on an additional dataset that does not overlap with
TreeDST.

Baselines In order to factor out the contribution
of meaning representations from model changes in
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Decoders Accuracy
TED-VANILLA 0.622

TED-PP 0.622
TED-FLAT 0.535

COMER (Ren et al., 2019) 0.509
TRADE (Wu et al., 2019) 0.513

Table 3: Results on the TreeDST test set

experiments, we additionally derive a version of
our dataset where all meaning representations are
flattened into slot-value pairs (details are described
in the next paragraph). We then introduce a
baseline TED-FLAT by training the same model
(as TED-VANILLA) on the flattened dataset.

We also introduce as baselines two state-of-
the-art slot-filling DST models based on encoder-
decoders: they include COMER (Ren et al., 2019)
which encodes the previous system response
transcription and the previous user dialog state and
decodes slot values; and TRADE (Wu et al., 2019)
which encodes all utterances in the history. Since
both TED-FLAT and the two baselines are trained
with flattened slot-value representations, we can
compare various models in this setup.

TreeDST flattening To flatten TreeDST we
collapse each path from the domain to leaf
nodes into a single slot. Verb nodes in the path
are excluded to avoid slot explosion. Take the
following tree as an example:

user.flight.book.object.equals
.source.equals.location.equals.London
.departureDateTime.equals
.date.equals.definedValue.equals
.Tomorrow

.time.equals.hour.equals.5

Three slot-value pairs can be extracted:

(flight+object+source+location, London)
(flight+object+departureDateTime+date
+definedValue, Tomorrow)
(flight+object+departureDateTime+time
+hour, 5)

The operator equals is not shown in the slot
names to make the names more concise.

Results The results are shown in Table 3.
Overall, both TED-VANILLA and TED-PP models
bring 20% relative improvement over existing slot-
filling-based DST models. By further factoring
out the impact of representation and model
differences, we see that representation plays a

Pattern Accuracy
All turns 0.647
Turns with intent change 0.552
Turns with compositional utterances 0.602
Turns with multi-intent utterances 0.478

Table 4: Results on the TreeDST development set,
broken down by dialog phenomena
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Figure 2: Validation exact match accuracy by turn ID

more important role: the TED-FLAT variant, which
differs only that it was trained on flattened parses,
is clearly outperformed by TED-VANILLA and
TED-PP. We conclude that even if dialog states
can be flattened into slot-value pairs, it is still
more favorable to use a compact, hierarchical
meaning representation. The advantage of the
representation is that it improves knowledge
sharing across different domains (e.g., message
and phone), verbs (e.g., create and update),
and dialog participators (user and system).
The second set of comparison is among different
modeling approaches using the same flat meaning
representation. TED-FLAT slightly outperforms
COMER and TRADE. The major difference is
that our model encodes both past user and system
representations; while the other models used past
transcriptions. We believe the gain of encoding
representations is that they are unambiguous; and
the encoding helps knowledge sharing between the
user and the system.

The vanilla and PP decoders achieve the same
exact match accuracy. The average training time
per epoch for PP is 1,794 seconds compared to
2,021 for vanilla, i.e. PP leads to 10% reduction
in decoding time without any effect on accuracy.
We believe that the efficiency of PP can be further
optimized by parallellizing the two prediction
layers of nodes and parents.

Analysis First, Table 4 shows a breakdown of the
TED-PP model performance by dialog behavior on
the development set. While the model does fairly
well on compositional utterances, states with intent
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switching and multiple intents are harder to predict.
We believe the reason is that the prediction of intent
switching requires task reference resolution within
the model; while multi-intent utterances tend to
have more complex trees.

Second, Figure 2 shows the vanilla model results
by turn index on the development set (black curve).
This shows the impact of error propagation as the
model predicts the target dialog state based on past
representations. To better understand the issue, we
compare to an oracle model which always uses the
gold previous dialog state for encoding (red curve).
Vanilla model accuracy decreases with turn index,
resulting in a gap with the oracle model. The error
propagation problem can be alleviated by providing
more complete dialog history to the encoder for
error recovery (Henderson et al., 2014b), which we
consider as future work.

Finally, we would like to point out a limitation
of our approach in tracking dialog history with a
stack-based memory. While the stack is capable
of memorizing and returning to a previously
unfinished task, there are patterns which cannot
be represented such as switching between two
ongoing tasks. We aim to explore a richer data
structure for dialog history in the future.

7 Conclusion

This work reformulates dialog state tracking as a
conversational semantic parsing task to overcome
the limitations of slot filling. Dialog states are
represented as rooted relational graphs to encode
compositionality, and encourage knowledge
sharing across different domains, verbs, slot types
and dialog participators. We demonstrated how a
dialog dataset with structured labels for both user
and system utterances can be collected with the aid
of a generative dialog simulator. We then proposed
a conversational semantic parser that performs
DST with an encoder-decoder model and a stack-
based memory. A parent-pointer decoder is further
proposed to speed up tree prediction. Experimental
results show that our DST solution outperforms
slot-filling-based trackers by a large margin.
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A Appendix. Dotted Tree

A dotted tree format is used throughout the paper to
reduce the space of drawing and the mental space
of readers. Dots represent edges between two tree
nodes. When a node has multiple children attached
to it, indentation is applied to reveal the hierarchy.

The following representation is the dotted format
for the tree in Figure 3.

user.flight.book.object.equals
.source.equals.location.equals.London
.destination.equals.location.equals.Paris
.departureDateTime.equals
.date.equals.definedValue.equals
.Tomorrow

.time.equals
.hour.equals.10
.meridiem.equals.AM

Figure 3: A tree representing the user intent Book a
ticket from London to Paris tomorrow 10 AM.


