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Abstract

Active learning strives to reduce annotation
costs by choosing the most critical examples
to label. Typically, the active learning strat-
egy is contingent on the classification model.
For instance, uncertainty sampling depends
on poorly calibrated model confidence scores.
In the cold-start setting, active learning is
impractical because of model instability and
data scarcity. Fortunately, modern NLP pro-
vides an additional source of information: pre-
trained language models. The pre-training
loss can find examples that surprise the model
and should be labeled for efficient fine-tuning.
Therefore, we treat the language modeling loss
as a proxy for classification uncertainty. With
BERT, we develop a simple strategy based
on the masked language modeling loss that
minimizes labeling costs for text classification.
Compared to other baselines, our approach
reaches higher accuracy within less sampling
iterations and computation time.

1 Introduction

Labeling data is a fundamental bottleneck in ma-
chine learning, especially for NLP, due to annota-
tion cost and time. The goal of active learning (AL)
is to recognize the most relevant examples and then
query labels from an oracle. For instance, policy-
makers and physicians want to quickly fine-tune
a text classifier to understand emerging medical
conditions (Voorhees et al., 2020). Finding labeled
data for medical text is challenging because of pri-
vacy issues or shortage in expertise (Dernoncourt
and Lee, 2017). Using AL, they can query labels
for a small subset of the most relevant documents
and immediately train a robust model.

Modern transformer models dominate the leader-
boards for several NLP tasks (Devlin et al., 2019;
Yang et al., 2019). Yet the price of adopting

∗?Work done while visiting National Taiwan University.

transformer-based models is to use more data. If
these models are not fine-tuned on enough exam-
ples, their accuracy drastically varies across differ-
ent hyperparameter configurations (Dodge et al.,
2020). Moreover, computational resources are a
major drawback as training one model can cost
thousands of dollars in cloud computing and hun-
dreds of pounds in carbon emissions (Strubell et al.,
2019). These problems motivate further work in
AL to conserve resources.

Another issue is that traditional AL algorithms,
like uncertainty sampling (Lewis and Gale, 1994),
falter on deep models. These strategies use model
confidence scores, but neural networks are poorly
calibrated (Guo et al., 2017). High confidence
scores do not imply high correctness likelihood,
so the sampled examples are not the most uncertain
ones (Zhang et al., 2017). Plus, these strategies
sample one document on each iteration. The single-
document sampling requires training the model
after each query and increases the overall expense.

These limitations of modern NLP models illus-
trate a twofold effect: they show a greater need for
AL and make AL more difficult to deploy. Ideally,
AL could be most useful during low-resource situa-
tions. In reality, it is impractical to use because the
AL strategy depends on warm-starting the model
with information about the task (Ash and Adams,
2019). Thus, a fitting solution to AL for deep clas-
sifiers is a cold-start approach, one that does not
rely on classification loss or confidence scores.

To develop a cold-start AL strategy, we should
extract knowledge from pre-trained models like
BERT (Devlin et al., 2019). The model encodes
syntactic properties (Tenney et al., 2019), acts as
a database for general world knowledge (Petroni
et al., 2019; Davison et al., 2019), and can de-
tect out-of-distribution examples (Hendrycks et al.,
2020). Given the knowledge already encoded in
pre-trained models, the annotation for a new task
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should focus on the information missing from pre-
training. If a sentence contains many words that
perplex the language model, then it is possibly un-
usual or not well-represented in the pre-training
data. Thus, the self-supervised objective serves as
a surrogate for classification uncertainty.

We develop ALPS (Active Learning by Process-
ing Surprisal), an AL strategy for BERT-based mod-
els.1 While many AL methods randomly choose
an initial sample, ALPS selects the first batch of
data using the masked language modeling loss. As
the highest and most extensive peaks in Europe
are found in the Alps, the ALPS algorithm finds
examples in the data that are both surprising and
substantial. To the best of our knowledge, ALPS

is the first AL algorithm that only relies on a self-
supervised loss function. We evaluate our approach
on four text classification datasets spanning across
three different domains. ALPS outperforms AL

baselines in accuracy and algorithmic efficiency.
The success of ALPS highlights the importance of
self-supervision for cold-start AL.

2 Preliminaries

We formally introduce the setup, notation, and ter-
minology that will be used throughout the paper.

Pre-trained Encoder Pre-training uses the lan-
guage modeling loss to train encoder parameters for
generalized representations. We call the model in-
put x = (wi)

l
i=1 a “sentence”, which is a sequence

of tokens w from a vocabulary V with sequence
length l. Given weights W , the encoder h maps x
to a d-dimensonal hidden representation h(x;W ).
We use BERT (Devlin et al., 2019) as our data en-
coder, so h is pre-trained with two tasks: masked
language modeling (MLM) and next sentence pre-
diction. The embedding h(x;W ) is computed as
the final hidden state of the [CLS] token in x. We
also refer to h(x;W ) as the BERT embedding.

Fine-tuned Model We fine-tune BERT on the
downstream task by training the pre-trained model
and the attached sequence classification head. Sup-
pose that f represents the model with the classi-
fication head, has parameters θ = (W,V ), and
maps input x to a C-dimensional vector with confi-
dence scores for each label. Specifically, f(x; θ) =
σ(V · h(x;W )) where σ is a softmax function.

Let D be the labeled data for our classifica-
tion task where the labels belong to set Y =

1https://github.com/forest-snow/alps

Algorithm 1 AL for Sentence Classification

Require: Inital model f(x; θ0) with pre-trained
encoder h(x;W0), unlabeled data pool U ,
number of queries per iteration k, number of
iterations T , sampling algorithm A

1: D = {}
2: for iterations t = 1, . . . , T do
3: if A is cold-start for iteration t then
4: Mt(x) = f(x; θ0)
5: else
6: Mt(x) = f(x; θt−1)

7: Qt ← Apply A on model Mt(x), data U
8: Dt ← Label queries Qt

9: D = D ∪Dt

10: U = U \ Dt

11: θt ← Fine-tune f(x; θ0) on D
12: return f(x; θT )

{1, ..., C}. During fine-tuning, we take a base
classifier f with weights W0 from a pre-trained
encoder h and fine-tune f on D for new parame-
ters θt. Then, the predicted classification label is
ŷ = argmaxy∈Y f(x; θt)y.

AL for Sentence Classification Assume that
there is a large unlabeled dataset U = {(xi)}ni=1

of n sentences. The goal of AL is to sample a
subset D ⊂ U efficiently so that fine-tuning the
classifier f on subset D improves test accuracy.
On each iteration t, the learner uses strategy A to
acquire k sentences from dataset U and queries
for their labels (Algorithm 1). Strategy A usually
depends on an acquisition model Mt (Lowell and
Lipton, 2019). If the strategy depends on model
warm-starting, then the acquisition model Mt is f
with parameters θt−1 from the previous iteration.
Otherwise, we assume that Mt is the pre-trained
model with parameters θ0. After T rounds, we ac-
quire labels for Tk sentences. We provide more
concrete details about AL simulation in Section 5.

3 The Uncertainty–Diversity Dichotomy

This section provides background on prior work
in AL. First, we discuss two general AL strategies:
uncertainty sampling and diversity sampling. Then,
we explain the dichotomy between the two con-
cepts and introduce BADGE (Ash et al., 2020), a
SOTA method that attempts to resolve this issue.
Finally, we focus on the limitations of BADGE and
other AL strategies to give motivation for our work.

https://github.com/forest-snow/alps
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Dasgupta (2011) describes uncertainty and di-
versity as the “two faces of AL”. While uncer-
tainty sampling efficiently searches the hypothesis
space by finding difficult examples to label, diver-
sity sampling exploits heterogeneity in the feature
space (Xu et al., 2003; Hu et al., 2010; Bodó et al.,
2011). Uncertainty sampling requires model warm-
starting because it depends on model predictions,
whereas diversity sampling can be a cold-start ap-
proach. A successful AL strategy should integrate
both aspects, but its exact implementation is an
open research question. For example, a naïve idea
is to use a fixed combination of strategies to sample
points. Nevertheless, Hsu and Lin (2015) experi-
mentally show that this approach hampers accuracy.
BADGE optimizes for both uncertainty and diver-
sity by using confidence scores and clustering. This
strategy beats uncertainty-based algorithms (Wang
and Shang, 2014), sampling through bandit learn-
ing (Hsu and Lin, 2015), and CORESET (Sener and
Savarese, 2018), a diversity-based method for con-
volutional neural networks.

3.1 BADGE

The goal of BADGE is to sample a diverse and
uncertain batch of points for training neural net-
works. The algorithm transforms data into repre-
sentations that encode model confidence and then
clusters these transformed points. First, an unla-
beled point x passes through the trained model
to obtain its predicted label ŷ. Next, a gradient
embedding gx is computed for x such that it em-
bodies the gradient of the cross-entropy loss on
(f(x; θ), ŷ) with respect to the parameters of the
model’s last layer. The gradient embedding is

(gx)i = (f(x; θ)i − 1(ŷ = i))h(x;W ). (1)

The i-th block of gx is the hidden representa-
tion h(x;W ) scaled by the difference between
model confidence score f(x; θ)i and an indicator
function 1 that indicates whether the predictive la-
bel ŷ is label i. Finally, BADGE chooses a batch to
sample by applying k-MEANS++ (Arthur and Vas-
silvitskii, 2006) on the gradient embeddings. These
embeddings consist of model confidence scores and
hidden representations, so they encode information
about both uncertainty and the data distribution. By
applying k-MEANS++ on the gradient embeddings,
the chosen examples differ in feature representation
and predictive uncertainty.

3.2 Limitations
BADGE combines uncertainty and diversity sam-
pling to profit from advantages of both methods
but also brings the downsides of both: reliance on
warm-starting and computational inefficiency.

3.2.1 Model Uncertainty and Inference
Dodge et al. (2020) observe that training is highly
unstable when fine-tuning pre-trained language
models on small datasets. Accuracy significantly
varies across different random initializations. The
model has not fine-tuned on enough examples, so
model confidence is an unreliable measure for un-
certainty. While BADGE improves over uncertainty-
based methods, it still relies on confidence scores
f(x; θ)i when computing the gradient embeddings
(Equation 1). Also, it uses labels inferred by the
model to compensate for lack of supervision in AL,
but this inference is inaccurate for ill-trained mod-
els. Thus, warm-start methods may suffer from
problems with model uncertainty or inference.

3.2.2 Algorithmic Efficiency
Many diversity-based methods involve distance
comparison between embedding representations,
but this computation can be expensive, especially
in high-dimensional space. For instance, CORESET

is a farthest-first traversal in the embedding space
where it chooses the farthest point from the set of
points already chosen on each iteration (Sener and
Savarese, 2018). The embeddings may appropri-
ately represent the data, but issues, like the “curse
of dimensionality” (Beyer et al., 1999) and the
“hubness problem” (Tomasev et al., 2013), persist.
As the dimensionality increase, the distance be-
tween any two points converges to the same value.
Moreover, the gradient embeddings in BADGE have
dimensionality of Cd for a C-way classification
task with data dimensionality of d (Equation 1).
These issues make distance comparison between
gradient embeddings less meaningful and raises
costs to compute those distances.

4 A Self-supervised Active Learner

Cold-start AL is challenging because of the short-
age in labeled data. Prior work, like BADGE, of-
ten depend on model uncertainty or inference, but
these measures can be unreliable if the model has
not trained on enough data (Section 3.2.1). To
overcome the lack of supervision, what if we ap-
ply self-supervision to AL? For NLP, the language
modeling task is self-supervised because the label
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Figure 1: To form surprisal embedding sx for sentence
x, we pass in unmasked x through the BERT MLM head
and compute cross-entropy loss for a random 15% sub-
sample of tokens against the target labels. The unsam-
pled tokens have entries of zero in sx. ALPS clusters
these surprisal embeddings to sample sentences for AL.

for each token is the token itself. If the task has
immensely improved transfer learning, then it may
reduce generalization error in AL too.

For our approach, we adopt the uncertainty-
diversity BADGE framework for clustering embed-
dings that encode information about uncertainty.
However, rather than relying on the classification
loss gradient, we use the MLM loss to bootstrap un-
certainty estimates. Thus, we combine uncertainty
and diversity sampling for cold-start AL.

4.1 Masked Language Modeling

To pre-train BERT with MLM, input tokens are ran-
domly masked, and the model needs to predict the
token labels of the masked tokens. BERT is bidirec-
tional, so it uses context from the left and right of
the masked token to make predictions. BERT also
uses next sentence prediction for pre-training, but
this task shows minimal effect for fine-tuning (Liu
et al., 2019). So, we focus on applying MLM to
AL. The MLM head can capture syntactic phenom-
ena (Goldberg, 2019) and performs well on psy-
cholinguistic tests (Ettinger, 2020).

Algorithm 2 Single iteration of ALPS

Require: Pre-trained encoder h(x;W0), unla-
beled data pool U , number of queries k

1: for sentences x ∈ U do
2: Compute sx with MLM head of h(x;W0)

3: M = {sx | x ∈ U}
4: C ← k-MEANS cluster centers ofM
5: Q = {argminx∈U ‖c− sx‖ |c ∈ C}
6: return Q

4.2 ALPS

Surprisal Embeddings Inspired by how BADGE

forms gradient embeddings from the classification
loss, we create surprisal embeddings from lan-
guage modeling. For sentence x, we compute sur-
prisal embedding sx by evaluating x with the MLM

objective. To evaluate MLM loss, BERT randomly
masks 15% of the tokens in x and computes cross-
entropy loss for the masked tokens against their
true token labels. When computing surprisal em-
beddings, we make one crucial change: none of
the tokens are masked when the input is passed
into BERT. However, we still randomly choose
15% of the tokens in the input to evaluate with
cross-entropy against their target token labels. The
unchosen tokens are assigned a loss of zero as they
are not evaluated (Figure 1).

These decisions for not masking input (Ap-
pendix A.1) and evaluating only 15% of tokens (Ap-
pendix A.2) are made because of experiments on
the validation set. Proposition 1 provides insight on
the information encoded in surprisal embeddings.
Finally, the surprisal embedding is l2-normalized as
normalization improves clustering (Aytekin et al.,
2018). If the input sentences have a fixed length of
l, then the surprisal embeddings have dimensional-
ity of l. The length l is usually less than the hidden
size of BERT embeddings.

Proposition 1. For an unnormalized surprisal em-
bedding sx, each nonzero entry (sx)i estimates
I(wi), the surprisal of its corresponding token
within the context of sentence x.

Proof. Extending notation from Section 2, assume
that m is the MLM head, with parameters φ =
(W,Z), which maps input x to a l × |V| matrix
m(x;φ). The ith row m(x;φ)i contains prediction
scores for wi, the ith token in x. Suppose that wi

is the jth token in vocabulary V . Then, m(x;φ)i,j
is the likelihood of predicting wi correctly.
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Now, assume that context is the entire input x
and define the language model probability pm as,

pm(wi |x) = m(x;φ)i,j . (2)

Salazar et al. (2020) have a similar definition as
Equation 2 but instead have defined it in terms of
the masked input. We argue that their definition
can be extended to the unmasked input x. During
BERT pre-training, the MLM objective is evaluated
on the [MASK] token for 80% of the time, random
token for 10% of the time, and the original token
for 10% of the time. This helps maintain consis-
tency across pre-training and fine-tuning because
[MASK] never appears in fine-tuning (Devlin et al.,
2019). Thus, we assume that m estimates occur-
rence of tokens within a maskless context as well.

Next, the information-theoretic surprisal (Shan-
non, 1948) is defined as I(w) = − log p(w | c), the
negative log likelihood of word w given context c.
If wi is sampled and evaluated, then the ith entry
of the unnormalized surprisal embedding is,

(sx)i = − logm(x;φ)i,j = − log pm(wi |x)
= I(wi).

Proposition 1 shows that the surprisal embed-
dings comprise of estimates for token-context sur-
prisal. Intuitively, these values can help with AL be-
cause they highlight the information missing from
the pre-trained model. For instance, consider the
sentences: “this is my favorite television show” and
“they feel ambivalent about catholic psychedelic
synth folk music”. Tokens from the latter have
higher surprisal than those from the former. If this
is a sentiment classification task, the second sen-
tence is more confusing for the classifier to learn.
The surprisal embeddings indicate sentences chal-
lenging for the pre-trained model to understand and
difficult for the fine-tuned model to label.

The most surprising sentences contain many rare
tokens. If we only train our model on the most sur-
prising sentences, then it may not generalize well
across different examples. Plus, we may sample
several atypical sentences that are similar to each
other, which is often an issue for uncertainty-based
methods (Kirsch et al., 2019). Therefore, we incor-
porate clustering in ALPS to maintain diversity.

k-MEANS Clustering After computing surprisal
embeddings for each sentence in the unlabeled

pool, we use k-MEANS to cluster the surprisal em-
beddings. Then, for each cluster center, we select
the sentence that has the nearest surprisal embed-
ding to it. The final set of sentences are the queries
to be labeled by an oracle (Algorithm 2). Although
BADGE uses k-MEANS++ to cluster, experiments
show that k-MEANS works better for surprisal em-
beddings (Appendix A.3).

5 Active Sentence Classification

We evaluate ALPS on sentence classification for
three different domains: sentiment reviews, news
articles, and medical abstracts (Table 1). To simu-
late AL, we sample a batch of 100 sentences from
the training dataset, query labels for this batch,
and then move the batch from the unlabeled pool
to the labeled dataset (Algorithm 1). The initial
encoder h(x; θ0), is an already pre-trained, BERT-
based model (Section 5.2). In a given iteration, we
fine-tune the base classifier f(x; θ0) on the labeled
dataset and evaluate the fine-tuned model with clas-
sification micro-F1 score on the test set. We do not
fine-tune the model f(x; θt−1) from the previous
iteration to avoid issues with warm-starting (Ash
and Adams, 2019). We repeat for ten iterations,
collecting a total of 1,000 sentences.

5.1 Baselines

We compare ALPS against warm-start methods (En-
tropy, BADGE, FT-BERT-KM) and cold-start meth-
ods (Random, BERT-KM). For FT-BERT-KM, we
use BERT-KM to sample data in the first iteration.
For other warm-start methods, data is randomly
sampled in the first iteration.

Entropy Sample k sentences with
highest predictive entropy measured by∑C

i=1(f(x; θ)i) ln(f(x; θ)i)
−1 (Lewis and

Gale, 1994; Wang and Shang, 2014).

BADGE Sample k sentences based on diversity
in loss gradient (Section 3.1).

BERT-KM Cluster pre-trained, l2-normalized
BERT embeddings with k-MEANS and sample the
nearest neighbors of the k cluster centers. The
algorithm is the same as ALPS except that BERT

embeddings are used.

FT-BERT-KM This is the same algorithm as
BERT-KM except the BERT embeddings h(x;Wt−1)
from the previously fine-tuned model are used.
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Dataset Domain Train Dev Test # Labels

AG NEWS News articles 110,000 10,000 7,600 4
IMDB Sentiment reviews 17,500 7,500 25,000 2
PUBMED 20k RCT Medical abstracts 180,040 30,212 30,135 5
SST-2 Sentiment reviews 60,615 6,736 873 2

Table 1: Sentence classification datasets used in experiments.
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Figure 2: Test accuracy of simulated AL over ten iterations with 100 sentences queried per iteration. The dashed
line is the test accuracy when the model is fine-tuned on the entire dataset. Overall, models trained with data
sampled from ALPS have the highest test accuracy, especially for the earlier iterations.

5.2 Setup

For each sampling algorithm and dataset, we run
the AL simulation five times with different random
seeds. We set the maximum sequence length to
128. We fine-tune on a batch size of thirty-two for
three epochs. We use AdamW (Loshchilov and
Hutter, 2019) with learning rate of 2e-5, β1 = 0.9,
β2 = 0.999, and a linear decay of learning rate.

For IMDB (Maas et al., 2011), SST-2 (Socher
et al., 2013), and AG NEWS (Zhang et al., 2015), the
data encoder is the uncased BERT-Base model with
110M parameters.2 For PUBMED (Dernoncourt and
Lee, 2017), the data encoder is SCIBERT, a BERT

model pre-trained on scientific texts (Beltagy et al.,
2019). All experiments are run on GeForce GTX
1080 GPU and 2.6 GHz AMD Opteron 4180 CPU
processor; runtimes in Table 2.

2https://huggingface.co/transformers/

5.3 Results

The model fine-tuned with data sampled by ALPS

has higher test accuracy than the baselines (Fig-
ure 2). For AG NEWS, IMDB, and SST-2, this is true
in earlier iterations. We often see the most gains in
the beginning for crowdsourcing (Felt et al., 2015).
Interestingly, clustering the fine-tuned BERT em-
beddings is not always better than clustering the
pre-trained BERT embeddings for AL. The fine-
tuned BERT embeddings may require training on
more data for more informative representations.

For PUBMED, test accuracy greatly varies be-
tween the strategies. The dataset belongs to a spe-
cialized domain and is class-imbalanced, so naïve
methods show poor accuracy. Entropy sampling
has the lowest accuracy because the classification
entropy is uninformative in early iterations. The
models fine-tuned on data sampled by ALPS and
BADGE have about the same accuracy. Both meth-
ods strive to optimize for uncertainty and diversity,
which alleviates problems with class imbalance.

https://huggingface.co/transformers/
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AG NEWS PUBMED

Random <1 <1
Entropy 7 10
ALPS 14 24
BADGE 23 70
BERT-KM 28 58
FT-BERT-KM 33 79

Table 2: Average runtime (minutes) per sampling iter-
ation during AL simulation for large datasets. BADGE,
FT-BERT-KM, and BERT-KM take much longer to run.

Our experiments cover the first ten iterations
because we focus on the cold-start setting. As
sampling iterations increase, test accuracy across
the different methods converges. Both ALPS and
BADGE already approach the model trained on the
full training dataset across all tasks (Figure 2).
Once the cold-start issue subsides, uncertainty-
based methods can be employed to further query
the most confusing examples for the model to learn.

6 Analyzing ALPS

Sampling Efficiency Given that the gradient em-
beddings are computed, BADGE has a time com-
plexity of O(Cknd) for a C-way classification
task, k queries, n points in the unlabeled pool, and
d-dimensional BERT embeddings. Given that the
surprisal embeddings are computed, ALPS has a
time complexity of O(tknl) where t is the fixed
number of iterations for k-MEANS and l is the
maximum sequence length. In our experiments,
k = 100, d = 768, t = 10, and l = 128. In prac-
tice, t will not change much, but n and C could be
much higher. For large dataset PUBMED, the aver-
age runtime per iteration is 24 minutes for ALPS

and 70 minutes for BADGE (Table 2). So, ALPS can
match BADGE’s accuracy more quickly.

Diversity and Uncertainty We estimate diver-
sity and uncertainty for data sampled across differ-
ent strategies. For diversity, we look at the overlap
between tokens in the sampled sentences and to-
kens from the rest of the data pool. A diverse batch
of sentences should share many of the same tokens
with the data pool. In other words, the sampled
sentences can represent the data pool because of
the substantial overlap between their tokens. In
our simulations, the entire data pool is the training
dataset (Section 5). So, we compute the Jaccard
similarity between VD, set of tokens from the sam-
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Figure 3: Plot of diversity against uncertainty estimates
from AL simulations for AG NEWS and PUBMED. Each
point represents a sampled batch of sentences from the
AL experiments. The shape indicates the strategy used
to sample the sentences. The color indicates the sample
iteration. The lightest color corresponds to the first iter-
ation and the darkest color represents the tenth iteration.
While uncertainty estimates are similar across different
batches, ALPS shows a consistent increase in diversity
without drops in uncertainty.

pled sentences D, and VD′ , set of tokens from the
unsampled sentences U \ D,

Gd(D) = J(VD,VD′) =
|VD ∩ VD′ |
|VD ∪ VD′ |

. (3)

If Gd is high, this indicates high diversity because
the sampled and unsampled sentences have many
tokens in common. If Gd is low, this indicates poor
diversity and representation.

To measure uncertainty, we use f(x, θ∗), the
classifier trained on the full training dataset. In our
experiments, classifier f(x, θ∗) has high accuracy
(Figure 2) and inference is stable after training on
many examples. Thus, we can use the logits from
the classifier to understand its uncertainty toward a
particular sentence. First, we compute predictive
entropy of sentence x when evaluated by model
f(x, θ∗). Then, we take the average of predictive
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(a) BERT embeddings with k-MEANS centers (b) Surprisal embeddings with k-MEANS centers

Figure 4: T-SNE plots of BERT embeddings and surprisal embeddings for each sequence in the IMDB training
dataset. The enlarged points are the centers determined by k-MEANS (left) and k-MEANS++ (right). The points are
colored according to their classification labels. In both sets of embeddings, we cannot clearly separate the points
from their labels, but the distinction between clusters in surprisal embeddings seems more obvious.

entropy over all sentences in a sampled batch D.
We use the average predictive entropy to esimate
uncertainty of the sampled sentences,

Gu(D) =
1

|D|
∑
x∈D

C∑
i=1

(f(x; θ∗)i) ln(f(x; θ∗)i)
−1.

(4)
We compute Gd and Gu for batches sampled in the
AL experiments of AG NEWS and PUBMED. Di-
versity is plotted against uncertainty for batches
sampled across different iterations and AL strate-
gies (Figure 3). For AG NEWS, Gd and Gu are
relatively low for ALPS in the first iteration. As
iterations increase, samples from ALPS increase
in diversity and decrease minimally in uncertainty.
Samples from other methods have a larger drop in
uncertainty as iterations increase. For PUBMED,
ALPS again increases in sample diversity without
drops in uncertainty. In the last iteration, ALPS has
the highest diversity among all the algorithms.

Surprisal Clusters Prior work use k-MEANS to
cluster feature representations as a cold-start AL ap-
proach (Zhu et al., 2008; Bodó et al., 2011). Rather
than clustering BERT embeddings, ALPS clusters
surprisal embeddings. We compare the clusters
between surprisal embeddings and BERT embed-
dings to understand the structure of the surprisal
clusters. First, we use t-SNE (Maaten and Hinton,
2008) to plot the embeddings for each sentence in
the IMDB training set (Figure 4). The labels are
not well-separated for both embedding sets, but the
surprisal embeddings seem easier to cluster. To

quantitively measure cluster quality, we use the Sil-
houette Coefficient for which larger values indicate
desirable clustering (Rousseeuw, 1987). The sur-
prisal clusters have a coefficient of 0.38, whereas
the BERT clusters have a coefficient of only 0.04.

These results, along with the classification exper-
iments, show that naïvely clustering BERT embed-
dings is not suited for AL. Possibly, more compli-
cated clustering algorithms can capture the intrinsic
structure of the BERT embeddings. However, this
would increase the algorithmic complexity and run-
time. Alternatively, one can map the feature repre-
sentations to a space where simple clustering algo-
rithms work well. During this transformation, im-
portant information for AL must be preserved and
extracted. Our approach uses the MLM head, which
has already been trained on extensive corpora, to
map the BERT embeddings into the surprisal em-
bedding space. As a result, simple k-MEANS can
efficiently choose representative sentences.

Single-iteration Sampling In Section 5, we sam-
ple data iteratively (Algorithm 1) to fairly compare
the different AL algorithms. However, ALPS does
not require updating the classifier because it only
depends on the pre-trained encoder. Rather than
sampling data in small batches and re-training the
model, ALPS can sample a batch of k sentences in
one iteration (Algorithm 2). Between using ALPS

iteratively and deploying the algorithm for a single
iteration, the difference is insignificant (Table 3).
Plus, sampling 1,000 sentences only takes about 97
minutes for PUBMED and 7 minutes for IMDB.
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Dataset k Iterative Single

IMDB 200 0.63 ± 0.04 0.61 ± 0.03
500 0.74 ± 0.05 0.76 ± 0.04

1000 0.82 ± 0.01 0.82 ± 0.01

PUBMED 200 0.63 ± 0.03 0.64 ± 0.03
500 0.80 ± 0.02 0.82 ± 0.01

1000 0.84 ± 0.00 0.84 ± 0.00

Table 3: Test accuracy on IMDB and PubMed between
different uses of ALPS for various k, the number of sen-
tences to query. We compare using ALPS iteratively (It-
erative) as done in Section 5 with using ALPS to query
all k sentences in one iteration (Single). The test ac-
curacy does not change much, showing that ALPS is
flexible to apply in different settings.

With this flexibility in sampling, ALPS can ac-
commodate different budget constraints. For exam-
ple, re-training the classifier may be costly, so users
want a sampling algorithm that can query k sen-
tences all at once. In other cases, annotators are not
always available, so the number of obtainable anno-
tations is unpredictable. Then, users would prefer
an AL strategy that can query a variable number of
sentences for any iteration. These cases illustrate
practical needs for a cold-start algorithm like ALPS.

7 Related Work

Active learning has shown success in tasks, such
as named entity recognition (Shen et al., 2004),
word sense disambiguation (Zhu and Hovy, 2007),
and sentiment analysis (Li et al., 2012). Wang and
Shang (2014) are the first to adapt prior AL work to
deep learning. However, popular heuristics (Settles,
2009) for querying individual points do not work as
well in a batch setting. Since then, more research
has been conducted on batch AL for deep learning.
Zhang et al. (2017) propose the first work on AL

for neural text classification. They assume that
the classifier is a convolutional neural network and
use expected gradient length (Settles et al., 2008)
to choose sentences that contain words with the
most label-discriminative embeddings. Besides
text classification, AL has been applied to neural
models for semantic parsing (Duong et al., 2018),
named entity recognition (Shen et al., 2018), and
machine translation (Liu et al., 2018).

ALPS makes use of BERT, a model that excels
at transfer learning. Other works also combine AL

and transfer learning to select training data that
reduce generalization error. Rai et al. (2010) mea-

sures domain divergence from the source domain
to select the most informative texts in the target
domain. Wang et al. (2014) use AL to query points
for a target task through matching conditional dis-
tributions. Additionally, combining word-level and
document-level annotations can improve knowl-
edge transfer (Settles, 2011; Yuan et al., 2020).

In addition to uncertainty and diversity sam-
pling, other areas of deep AL focus on Bayesian
approaches (Siddhant and Lipton, 2018; Kirsch
et al., 2019) and reinforcement learning (Fang et al.,
2017). An interesting research direction can inte-
grate one of these approaches with ALPS.

8 Conclusion

Transformers are powerful models that have revolu-
tionized NLP. Nevertheless, like other deep models,
their accuracy and stability require fine-tuning on
large amounts of data. AL should level the playing
field by directing limited annotations most effec-
tively so that labels complement, rather than du-
plicate, unsupervised data. Luckily, transformers
have generalized knowledge about language that
can help acquire data for fine-tuning. Like BADGE,
we project data into an embedding space and then
select the most representative points. Our method
is unique because it only relies on self-supervision
to conduct sampling. Using the pre-trained loss
guides the AL process to sample diverse and uncer-
tain examples in the cold-start setting. Future work
may focus on finding representations that encode
the most important information for AL.
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Figure 5: Comparing validation accuracy between us-
ing k-MEANS and k-MEANS++ to select centroids in
the surprisal embeddings. Using k-MEANS reaches
higher accuracy.

A.1 Token Masking

In our preliminary experiments on the validation
set, we notice improvement in accuracy after pass-
ing in the original input with no masks (Table 4).
The purpose of the [MASK] token during pre-
training is to train the token embeddings to learn
context so that it can predict the token labels. Since
we are not training the token embeddings to learn
context, masking the tokens does not help much for
AL. We use AL for fine-tuning, so the input should
be in the same format for AL and fine-tuning. Oth-
erwise, there is a mismatch between the two stages.

A.2 Token Sampling for Evaluation

When BERT evaluates MLM loss, it only focuses on
the masked tokens, which are from a 15% random
subsample of tokens in the sentence. We experi-
ment with varying this subsample percentage on
the validation set (Table 4). We try sampling 10%,
15%, 20%, and 100%. Overall, we notice that mean
accuracy are roughly the same, but variance in ac-
curacy across different runs is slightly higher for
percentages other than 15%.

After the second AL iteration, we notice that ac-
curacy mean and variance between the different to-
ken sampling percentages converge. So, the token
sampling percentage makes more of a difference in
early stages of AL. Devlin et al. (2019) show that

(a) Surprisal embeddings with k-MEANS++ centers

(b) Surprisal embeddings with k-MEANS centers

Figure 6: T-SNE plots of surprisal embeddings for
IMDB training data. The centers are either picked by
k-MEANS++ (right) or k-MEANS (left). There is less
overlap between the centers with k-MEANS compared
to k-MEANS++. So, using k-MEANS is better for ex-
ploiting diversity in the surprisal embedding space.

the difference in accuracy between various mask
strategies is minimal for fine-tuning BERT. We
believe this can also be applied to what we have
observed for ALPS.

A.3 k-MEANS vs. k-MEANS++

The state-of-the-art baseline BADGE applies k-
MEANS++ on gradient embeddings to select points
to query. Initially, we also use k-MEANS++ on
the surprisal embeddings but validation accuracy is
only slightly higher than random sampling. Since
k-MEANS++ is originally an algorithm for robust
initialization of k-MEANS, we instead apply k-
MEANS on the surprisal embeddings. As a result,
we see more significant increase in accuracy over
baselines, especially for PubMed (Figure 5). Addi-
tionally, the t-SNE plots show that k-MEANS selects
centers that are further apart compared to the ones
chosen by k-MEANS++ (Figure 6). This shows that
k-MEANS can help sample a more diverse batch of
data.
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IMDB SST-2

k = 100 k = 200 k = 100 k = 200

ALPS 0.60± 0.03 0.69± 0.04 0.57± 0.06 0.64± 0.04
ALPS-tokens-0.1 0.61± 0.05 0.63± 0.11 0.56± 0.07 0.63± 0.04
ALPS-tokens-0.2 0.55± 0.07 0.65± 0.05 0.57± 0.05 0.63± 0.05
ALPS-tokens-1.0 0.59± 0.05 0.65± 0.07 0.56± 0.05 0.62± 0.05
ALPS-masked 0.59± 0.03 0.63± 0.09 0.56± 0.03 0.60± 0.02

Table 4: Comparison of validation accuracy between the variants of ALPS to sample data for IMDB and SST-2 in
the first two iterations. ALPS-tokens-p varies the percentage p of tokens evaluated with MLM loss when computing
surprisal embeddings. ALPS-masked passes in the input with masks as originally done in pre-training. Overall, we
observe that ALPS has higher mean and smaller variance in accuracy.

AG NEWS PUBMED

ALPS
Jason Thomas matches a career-high with 26
points and American wins its fifth straight
by beating visiting Ohio, 64-55, Saturday at
Bender Arena (Sports)

The results showed that physical activity and
exercise capacity in the intervention group
was significantly higher than the control
group after the intervention . (results)

Sainsbury says it will take a 550 million
pound hit to profits this year as it invests to
boost sales and reverse falling market share
(Business)

Flumazenil was administered after the
completion of endoscopy under sedation to
reduce recovery time and increase patient
safety . (objective)

Random
Bernhard Langer and Hal Sutton stressed
the importance of playing this year’s 135th
Ryder Cup . . . (Sports)

The study population consisted of 20 interns
and medical students (methods)

BLOOMFIELD TOWNSHIP, Mich. –
When yesterday’s Ryder Cup pairings were
announced, Bernhard Langer knew his team
had been given an opportunity. (Sports)

The subject , health care provider , and re-
search staff were blinded to the treatment .
(methods)

Table 5: Sample sentences from AG News and PubMed while using ALPS and Random in the first iteration. For
ALPS, highlighted tokens are the ones that have a nonzero entry in the surprisal embedding. Compared to random
sampling, ALPS samples sentences with more diverse content.

A.4 Sample Sentences

Section 6 quantitatively analyzes diversity of ALPS.
Here, we take a closer look at the kind of sen-
tences that are sampled by ALPS. Table 5 compares
sentences that are chosen by ALPS and random
sampling in the first AL iteration. The tokens high-
lighted are the ones evaluated with surprisal loss.
Random sampling can fall prey to data idiosyncra-
cies. For example, AG News has sixty-two articles
about the German golfer Bernhard Langer, and ran-
dom sampling picks multiple articles about him
on one of five runs. For PubMed, many sentences
labeled as “methods” are simple sentences with a
short, independent clause. While random sampling
chooses many sentences of this form, ALPS seems

to avoid this problem. Since the surprisal embed-
ding encodes the fluctuation in information con-
tent across the sentence, ALPS is less likely to re-
peatedly choose sentences with similar patterns in
surprisal. This may possibly diversify syntactic
structure in a sampled batch.


