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Abstract

We analyze several recent unsupervised con-
stituency parsing models, which are tuned
with respect to the parsing F1 score on the Wall
Street Journal (WSJ) development set (1,700
sentences). We introduce strong baselines for
them, by training an existing supervised pars-
ing model (Kitaev and Klein, 2018) on the
same labeled examples they access. When
training on the 1,700 examples, or even when
using only 50 examples for training and 5
for development, such a few-shot parsing ap-
proach can outperform all the unsupervised
parsing methods by a significant margin. Few-
shot parsing can be further improved by a
simple data augmentation method and self-
training. This suggests that, in order to ar-
rive at fair conclusions, we should carefully
consider the amount of labeled data used for
model development. We propose two proto-
cols for future work on unsupervised parsing:
(i) use fully unsupervised criteria for hyperpa-
rameter tuning and model selection; (ii) use as
few labeled examples as possible for model de-
velopment, and compare to few-shot parsing
trained on the same labeled examples.1

1 Introduction

Recent work has considered neural unsupervised
constituency parsing (Shen et al., 2018a; Drozdov
et al., 2019; Kim et al., 2019b, inter alia), show-
ing that it can achieve much better performance
than trivial baselines. However, many of these ap-
proaches use the gold parse trees of all sentences in
a development set for either early stopping (Shen
et al., 2018a, 2019; Drozdov et al., 2019, inter alia)
or hyperparameter tuning (Kim et al., 2019a). In
contrast, models trained and tuned without any la-
beled data (Kim et al., 2019b; Peng et al., 2019)
are much less competitive.

1 Project page: https://ttic.uchicago.edu/
˜freda/project/rsucp/

Are the labeled examples important in order to
obtain decent unsupervised parsing performance?
How well can we do if we train on these labeled
examples rather than merely using them for tuning?
In this work, we consider training a supervised con-
stituency parsing model (Kitaev and Klein, 2018)
with very few examples as a strong baseline for
unsupervised parsing tuned on labeled examples.

We empirically characterize unsupervised and
few-shot parsing across the spectrum of labeled
data availability, finding that (i) tuning based on a
few (as few as 15) labeled examples is sufficient to
improve unsupervised parsers over fully unsuper-
vised criteria by a significant margin; (ii) unsuper-
vised parsing with supervised tuning does outper-
form few-shot parsing with fewer than 15 labeled
examples, but few-shot parsing quickly dominates
once there are more than 55 examples; and (iii)
when few-shot parsing is combined with a simple
data augmentation method and self-training (Steed-
man et al., 2003; Reichart and Rappoport, 2007;
McClosky et al., 2006, inter alia), only 15 exam-
ples are needed for few-shot parsing to begin to
dominate.

Based on these results, we propose the following
two protocols for future work on unsupervised
parsing:

1. Derive and use fully unsupervised criteria for
hyperparameter tuning and model selection.

2. Use as few labeled examples as possible for
model development and tuning, and compare
to few-shot parsing models trained on the
used examples as a strong baseline.

We suggest future work to tune and compare mod-
els under each protocol separately.

In addition, we present two side findings on
unsupervised parsing: (i) the vocabulary size in
unsupervised parsing, which has not been widely
considered as a hyperparameter and varies across

https://ttic.uchicago.edu/~freda/project/rsucp/
https://ttic.uchicago.edu/~freda/project/rsucp/


7612

prior work, greatly affects the performance of all
unsupervised parsing models tested; and (ii) self-
training can help improve all investigated unsu-
pervised parsing (Shen et al., 2018a, 2019; Droz-
dov et al., 2019; Kim et al., 2019a) and few-shot
parsing models, and thus can be considered as a
post-processing step in future work.

2 Related Work

Unsupervised parsing. During the past two
decades, there has been a lot of work on both un-
supervised constituency parsing (Klein and Man-
ning, 2002, 2004; Bod, 2006a,b; Seginer, 2007;
Snyder et al., 2009, inter alia) and unsupervised
dependency parsing (Klein and Manning, 2004;
Smith and Eisner, 2006; Spitkovsky et al., 2011,
2013, inter alia). Recent work has proposed sev-
eral effective models for unsupervised or distantly
supervised constituency parsing, optimizing either
a language modeling objective (Shen et al., 2018a,
2019; Kim et al., 2019b,a, inter alia) or other down-
stream semantic objectives (Li et al., 2019; Shi
et al., 2019). Some of them are tuned with labeled
examples in the WSJ development set (Shen et al.,
2018a, 2019; Htut et al., 2018; Drozdov et al., 2019;
Kim et al., 2019a; Wang et al., 2019) or other la-
beled examples (Jin et al., 2018, 2019).

Data augmentation. Data augmentation is a
strategy for automatically increasing the amount
and variety of data for training models, without ac-
tually collecting any new data. Such methods have
been found helpful on many NLP tasks, includ-
ing text classification (Kobayashi, 2018; Samanta
et al., 2019), relation classification (Xu et al., 2016),
and part-of-speech tagging (Şahin and Steedman,
2018). Part of our approach also falls into the cate-
gory of data augmentation, applied specifically to
constituency parsing from very few examples.

Few-shot parsing. Sagae et al. (2008) show that
a supervised dependency parsing model trained on
100 examples can work surprisingly well. Recent
work has demonstrated the potential of few-shot de-
pendency parsing on multiple languages (Aufrant
et al., 2018; Meechan-Maddon and Nivre, 2019;
Vania et al., 2019, inter alia). Our approach (§3)
can be viewed as few-shot constituency parsing.

3 Few-Shot Constituency Parsing

We apply Benepar (§3.1; Kitaev and Klein, 2018)
as the base model for few-shot parsing. We present

a simple data augmentation method (§3.2) and an
iterative self-training strategy (§3.3) to further im-
prove the performance. We suggest that such an
approach should serve as a strong baseline for un-
supervised parsing with supervised tuning.

3.1 Parsing Model
The Benepar parsing model consists of (i) word
embeddings, (ii) transformer–based (Vaswani et al.,
2017) word-span embeddings, and (iii) a multi-
layer perceptron to compute a score for each la-
beled span.2 The score of an arbitrary tree is de-
fined as the sum of all of its internal span scores.
Given a sentence and its ground-truth parse tree
T ∗, the model is trained to satisfy score(T ∗) ≥
score(T ) + ∆(T ∗, T ) for any tree T (T 6= T ∗),
where ∆ denotes the Hamming loss on labeled
spans. The label-aware CKY algorithm is used to
obtain the tree with the highest score. More details
can be found in Kitaev and Klein (2018).

3.2 Data Augmentation
We introduce a data augmentation method, subtree
substitution (SUB; Figure 1), to automatically im-
prove the diversity of data in the few-shot setting.

We start with a set of sentences with N un-
labeled parse trees S = {〈si, Ti〉}Ni=1; si =
〈wi1, wi2, . . . , wiLi〉 denotes a sentence with Li

words, where wik denotes a word; Ti =
{〈bij , eij〉}Ci

j=1 denotes the unlabeled parse tree of
si with Ci nonterminal nodes; bij and eij denotes
the beginning and ending index of a constituent.

The augmented dataset S ′ is initialized to S . At
each step, we draw a sentence si and its parse
tree Ti uniformly from S ′, and draw a constituent
〈bij , eij〉 ∈ Ti uniformly from Ti. After that, we
replace 〈bij , eij〉 with a random 〈bkh, ekh〉 ∈ tk;
that is, we replace a constituent with another one
from the training set. We let s′i and T ′i denote
modified sentence and its parse tree, assign S ′ ←
S ′ ∪ {(s′i, T ′i )}, and repeat the above procedure
until S ′ reaches the desired size.

3.3 Self-Training
Steedman et al. (2003), Reichart and Rappoport
(2007) and McClosky et al. (2006) have shown that

2In this work, there are only two labels: (i) NT denotes
a constituent and (ii) ∅ denotes non-constituent. The label ∅
enables the parser to output non-binary trees; details can be
found in Kitaev and Klein (2018). Almost all existing unsu-
pervised parsing models do not use the nonterminal categories
in the development set, so we propose to train such unlabeled
constituency parsing models as their baselines.
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Original sentences:
NT

NT

a cat

NT

is drinking milk

NT

NT

several kittens

NT

were born NT

in NT

the shelter

Generated sentences:

NT

NT

a cat

NT

several kittens

NT

NT

a cat

NT

in NT

the shelter

Figure 1: Illustration of the proposed data augmenta-
tion approach for improving few-shot parsing: we cre-
ate new sentences by subtree substitution (e.g., substi-
tuting the subtree in the solid box by the ones in the dot-
ted or dashed box), whether the created sentences are
grammatical or not. NT denotes nonterminal nodes.

self-training (ST) on unseen sentences can improve
a parsing model. Inspired by this, we apply an
iterative self-training strategy after obtaining each
supervised or unsupervised parsing model.

Concretely, we start with an arbitrary parsing
modelM0. At the ith step of self-training, we (i)
use the trained model from the previous step (i.e.,
Mi−1) to predict parse trees for sentences in the
WSJ training set and those in the WSJ development
set, and (ii) train a supervised parsing modelMi

(Kitaev and Klein, 2018) to fit the prediction of
Mi−1. No gold labels are used in self-training.

4 Experiments

4.1 Dataset and Training Details

We use the WSJ portion of the Penn Treebank cor-
pus (Marcus et al., 1993) to train and evaluate the
models, replace all number tokens with a special to-
ken, and split standard train/dev/test sets following
Kim et al. (2019b).3 For each criterion, we tune the
hyperparameters of each model with respect to its

3For analysis purposes (§4.5 and Figure 2), we use WSJ
Section 24, instead of the standard development set (Sec-
tion 22) as we train few-shot parsing on part of it. We do
not use the standard test split (Section 23) to avoid tuning
on the test set, hence our analysis numbers are not directly
comparable with those reported in original papers.

performance on the development set. To solve the
problem of vocabulary sparsity in the few-shot pars-
ing setting (§3), we initialize the word embeddings
of Benepar (Kitaev and Klein, 2018) with the word
embeddings from an LSTM–based (Hochreiter and
Schmidhuber, 1997) language model trained on
the WSJ training set. During training, models are
able to access all sentences (without parse trees)
in the WSJ training set; for few-shot parsing or
unsupervised parsing with supervised tuning, some
unlabeled parse trees in the WSJ development set
are available as well. We augment the training set
to 10,000 examples for few-shot parsing with SUB,
and apply 5-step self-training when applicable.

We evaluate the unlabeled F1 score of all mod-
els using evalb,4 discarding punctuation. More
details can be found in the supplementary material.

4.2 Models and Tuning Criteria

We investigate four recently proposed models:
PRPN (Shen et al., 2018a), ON-LSTM (Shen et al.,
2019), DIORA (Drozdov et al., 2019), and Com-
pound PCFG (Kim et al., 2019a).

PRPN and ON-LSTM are left-to-right neural
language models, where syntactic distance (Shen
et al., 2018b) between consecutive words is com-
puted from the model output and used to infer the
constituency parse tree. DIORA learns text-span
representations and span-level scores by optimiz-
ing a masked language modeling objective. The
compound PCFG uses a neural parameterization
of a PCFG, as well as a per-sentence latent vector
which introduces context sensitivity. Both DIORA
and the Compound PCFG use the CKY algorithm
to infer the parse tree of a given sentence.

As fully unsupervised tuning criteria, we use
perplexity on the development set for PRPN and
ON-LSTM, and the upper bound of perplexity for
the Compound PCFG, following Shen et al. (2018a,
2019) and Kim et al. (2019a) respectively. For
DIORA, we use its reconstruction loss on the de-
velopment set.5

4.3 Comparison between Unsupervised
Parsing and Few-Shot Parsing

We compare unsupervised parsing against few-shot
parsing (Table 1 and Figure 2): when there are
55 or more labeled examples available, few-shot

4https://nlp.cs.nyu.edu/evalb/
5Drozdov et al. (2019) did not evaluate any unsupervised

tuning criteria for DIORA. We choose reconstruction loss
because it is what DIORA minimizes during training.

https://nlp.cs.nyu.edu/evalb/
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Model \|Dlabel| 0 15 55 1,700

PRPN 42.4 44.6 44.7 44.9
DIORA 46.6 47.7 47.6 48.0
Compound PCFG 39.2 39.2 39.2 39.2
ON-LSTM 39.0 51.5 51.1 52.0

Few-Shot N/A 42.1 55.5 81.2
Few-Shot + SUB N/A 52.5 58.5 82.6
Few-Shot + SUB + ST N/A 53.4 61.2 85.1

Table 1: Unlabeled F1 scores on the standard WSJ test
set (Section 23). We keep all tokens, resulting in a vo-
cabulary size |V | = 35K. |Dlabel| = 0 means using
fully unsupervised criteria (§4.2); otherwise we use the
first |Dlabel| labeled examples in WSJ Section 22. For
few-shot parsing (§3), we divide the available labeled
examples into 10/5, 50/5, and 1,600/100 respectively
for training and development. We use boldface for the
best unsupervised parsing result and the best few-shot
parsing result in each column.

parsing (§3) consistently outperforms all unsuper-
vised parsing models; with SUB and self-training
or a smaller vocabulary size (|V | = 10K), few-
shot parsing begins to dominate even when only 15
labeled examples are available.

On the other hand, we find that a few labeled
examples are consistently helpful for most models
to achieve better results than fully unsupervised
parsing. In addition, models tuned on a very small
number (e.g., 15) of labeled examples can achieve
similar performance to those tuned on 1,700 la-
beled examples; that is, we need far fewer labeled
examples than existing unsupervised parsing ap-
proaches have used to obtain very similar results.

To test if SUB can also help improve unsuper-
vised parsing models, we generate 10K sentences
from the 1,700 sentences in the WSJ development
set with SUB (Figure 1), and add them to the 40K-
sentence WSJ training set. We compare unsuper-
vised parsing models trained on the original WSJ
training set and the augmented one (Table 2). We
find that SUB can sometimes help, but not by a
large margin, and all numbers in Table 2 are far
below the performance of few-shot parsing with
the same data availability (82.6; Table 1). Few-shot
parsing with data augmentation is a strong baseline
for unsupervised parsing with data augmentation.

4.4 The Importance of Vocabulary Size

We notice that the result of the Compound PCFG
in Table 1 is much worse than that reported by Kim

0 15 25 55 105
number of labaled examples

|V|=35K
PRPN
DIORA
C-PCFG
ON-LSTM
Few-shot

0 15 25 55 105
number of labeled examples

|V|=10K

40

50

60

70

F1

Figure 2: Performance of models with vocabulary size
35K (left) and 10K (right) on WSJ Section 24. C-PCFG
denotes the Compound PCFG. The F1 scores are aver-
aged over 5 runs with the same hyperparameters, dif-
ferent random seeds, and different sets of labeled ex-
amples when applicable.

Model WSJtrain + WSJdev SUB

PRPN 44.9 46.1
DIORA 48.0 48.2
Compound PCFG 39.2 42.2
ON-LSTM 52.0 48.2

Table 2: Unlabeled F1 scores on the standard WSJ test
set. WSJtrain denotes models trained with the 40K sen-
tences in the WSJ training set, and + WSJdev SUB de-
notes models trained with the union of WSJ training
sentences and 10K sentences augmented from 1,700
WSJ development sentences. The best number in each
row is bolded.

et al. (2019a).6 The only major difference between
their approach and ours is the vocabulary size: in-
stead of keeping all words, they keep the most
frequent 10K words in the WSJ corpus and replace
others with a special token. To analyze the impor-
tance of this choice, we compare the performance
of the models with vocabulary size 35K vs. 10K
(Figure 2), tuning models separately in the two set-
tings. We find that the vocabulary size, which has
not been widely considered a hyperparameter and
varies across prior work, greatly affects the perfor-
mance of all models tested. One possible reason is
that a large portion (79.9%) of the low-frequency
(i.e., outside the 10K vocabulary) word tokens are
nouns or adjectives – some models (e.g., PRPN
and Compound PCFG) may benefit from collaps-
ing these tokens to a single form, as it may be a
beneficial kind of word clustering. This suggests
that we should consider tuning the vocabulary size

6Our DIORA result also differs from that reported by Droz-
dov et al. (2019); however, our number is not directly com-
parable to theirs due to different data settings—they use a
different training set and apply ELMo (Peters et al., 2018) for
model initialization.
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Model #ST-steps
0 1 5

PRPN 44.7 44.7 45.1
DIORA 46.7 48.7 49.1
Compound PCFG 41.1 41.8 42.2
ON-LSTM 50.2 51.3 52.1
Few-Shot 44.3 44.5 45.0
Few-Shot + SUB 53.3 55.5 56.6

Table 3: F1 score on WSJ Section 24 of different mod-
els, where the base models are those used to report re-
sults in Table 1 with |Dlabel| = 15.

as a hyperparameter, or fix the vocabulary size for
fair comparison in future work.

4.5 Self-Training Improves all Models
Inspired by the fact that self-training boosts the
performance of few-shot parsing (Table 1), we ap-
ply iterative self-training to the unsupervised pars-
ing models as well, and find that it improves all
models (Table 3).7 It is worth noting that 5-step
self-training is better than 1-step self-training for
all base models we experimented with. Our results
suggest that iterative (e.g., 5-step) self-training may
be considered as a standard post-hoc processing
step for unsupervised parsing.

5 Discussion

While many state-of-the-art unsupervised parsing
models are tuned on all labeled examples in a devel-
opment set (Drozdov et al., 2019; Kim et al., 2019b;
Wang et al., 2019, inter alia), we have demon-
strated that, given the same data, few-shot parsing
with simple data augmentation and self-training
can consistently outperform all of these models by
a large margin. We suggest that one possibility for
future work is to focus on fully unsupervised crite-
ria, such as language model perplexity (Shen et al.,
2018a, 2019; Kim et al., 2019b; Peng et al., 2019;
Li et al., 2020) and model stability across different
random seeds (Shi et al., 2019), for model selection,
as discussed in unsupervised learning work (Smith
and Eisner, 2005, 2006; Spitkovsky et al., 2010a,b,
inter alia). An alternative is to use as few labeled
examples in the development set as possible, and
compare to few-shot parsing trained on the used
examples as a strong baseline. In addition, we find
that self-training is a useful post-processing step
for unsupervised parsing.

7A similar idea and similar results have been presented by
Kim et al. (2019a), where they train an RNNG (Dyer et al.,
2016) to fit the prediction of unsupervised parsing models.

Our work does not necessarily imply that unsu-
pervised parsers produce poor parses; they may be
producing good parses that clash with the conven-
tions of treebanks (Klein, 2005). If this is the case,
then extrinsic evaluation of parsers in downstream
tasks (Shi et al., 2018), e.g., machine translation
(DeNero and Uszkoreit, 2011; Neubig et al., 2012;
Gimpel and Smith, 2014), may better show the
potential of unsupervised methods.
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Appendices

A Training Details

A.1 Datasets and Standard Splits

We summarize the details for the dataset, i.e., the
Penn Treebank (Marcus et al., 1993) in Table 4.8

We follow Kim et al. (2019b) to preprocess the orig-
inal dataset, removing all noterminals indicating
syntactic movement (e.g., the -NONE- category)
as well as all sub-categories of nonterminal nodes
(e.g., NP-SBJ→ NP).

A.2 Hyperparameter Tuning

We modify the original code to fit our experiments.
All models requires PyTorch (Paszke et al., 2017)
for automatic differentiation. We train all of our
models except ON-LSTM with an Adam optimizer
(Kingma and Ba, 2015), and use stochastic gradi-
ent descent (SGD) for ON-LSTM.9 We make the
batch size as large as possible to make efficient
use of GPU memory. We use grid search (i.e.,
enumerate all possible combinations of hyperpa-
rameters) to tune models, where the considered
hyperparameters of models and values are as fol-
lows. We evaluate on the development set after
every epoch. For hyperparameter tuning, we let
each model run for 10 epochs (i.e., see the training
set for 10 times) and select the best group of hy-
perparameters with respect to each criterion (see
paper for details). We tune the hyperparameters
with the vocabulary size |V | = 35K, and we use
the selected best performing hyperparameters to
train models with |V | = 10K.

8https://catalog.ldc.upenn.edu/
LDC99T42

9Shen et al. (2019) and previous work have shown that
SGD leads to much better performance than Adam, in terms
of language model perplexity.
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Split Sections # Examples

dev Section 22 39,832
test Section 23 1,700

train Sections 02-21 2,416
rest Sections 00, 01, 24 1,346 (Sec. 24)

Table 4: Details of standard split for the WSJ portion of
the Penn Treebank (Marcus et al., 1993). All sentences
are in English. The rest split is intended left not to use
in the standard supervised parsing process, and may be
used for other purposes. We use Section 24 for our
analysis.

Benepar (Kitaev and Klein, 2018).10

Hyperparameter Considered Values

learning rate 1× 10−3, 5× 10−4,
1× 10−4, 5× 10−5

hidden layer size 256, 512, 1024
number of hidden layers 2, 4, 8

# hyperparameter search trials = 4× 3× 3 = 36.

PRPN (Shen et al., 2018a).11

Hyperparameter Considered Values

learning rate 1× 10−3, 5× 10−4, 1× 10−4

hidden layer size 100, 200, 400

# hyperparameter search trials = 3× 3 = 9.

ON-LSTM (Shen et al., 2019).12

Hyperparameter Considered Values

learning rate 1, 10, 30
hidden layer size 100, 200, 400

# hyperparameter search trials = 3× 3 = 9.

We follow Shen et al. (2019) to use a 3-layer ON-
LSTM, and used the master gates in the second
layer to compute the syntactic distance (Shen et al.,
2018b).

DIORA (Drozdov et al., 2019).13

Hyperparameter Considered Values

Architecture TreeLSTM
(Tai et al., 2015; Zhu et al., 2015)

MLP, MLP-shared
learning rate 1× 10−3, 5× 10−4, 1× 10−4

negative ex. 5, 10, 20
hidden layer size 100, 200, 400

# hyperparameter search trials = 3×3×3×3 = 81.

Compound PCFG (Kim et al., 2019a).14

10https://github.com/nikitakit/
self-attentive-parser

11https://github.com/yikangshen/PRPN
12https://github.com/yikangshen/

Ordered-Neurons
13https://github.com/iesl/diora
14https://github.com/harvardnlp/

compound-pcfg

Hyperparameter Considered Values

learning rate 1× 10−3, 5× 10−4, 1× 10−4

#nonterminal 20, 30, 40
#preterminal 50, 60

# hyperparameter search trials = 3× 3× 2 = 18.

A.3 Model Selection
All experiments are done on a Titan X GPU or a
Titan RTX GPU when large GPU memory is re-
quired. After selecting the best hyperparameter
set for each model under each criterion, we let the
model run for at most 100 epochs and at most 96
hours.15 We evaluate on the development set after
every epoch, with respect to each (fully unsuper-
vised or few labeled examples based) criterion. The
best performing hyperparameter set is summarized
in Table 5.

A.4 Run Time
We report the running time and number of epochs
within the allowed running time (i.e., 96h) of each
best-performing model in Table 6.

A.5 Hyperparameters for Self-Training
We use the following hyperparameters for all self-
training experiments. Other possible hyperparame-
ters are identical to the default ones. Please see the
code attached for details.

Hyperparameter Value

learning rate 5× 10−5

hidden layer size 1024
number of hidden layers 2

B Evaluation parameters

We report the used evalb parameters in Table 7.
We modify the original COLLINS.prm to let it eval-
uate unlabeled F1 score,16 ignoring punctuation
when testing.17

C Standard Deviation w.r.t. Different
Small Development Sets

In the main content of the paper (Figure 2), We
show the average WSJ Section 24 performance (in
terms of F1 score) of models with different random
seeds and different development set (if applicable),

15Practically, some settings share the same best hyperpa-
rameters, so we can save all the intermediate checkpoints and
do post-hoc model selection efficiently.

16https://nlp.cs.nyu.edu/evalb/EVALB.
tgz

17We keep the punctuation during training.
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Model # Available Ex. Hyperparameters # Params Dev. Performance

Benepar 15 1× 10−4, 512, 4 6.6M 54.7
25 1× 10−4, 1024, 2 6.9M 56.6
55 5× 10−5, 256, 8 6.4M 65.4

105 5× 10−5, 256, 4 3.3M 66.1
1,700 5× 10−5, 1024, 2 6.9M 84.1

Benepar+SUB 15 5× 10−5, 1024, 2 6.9M 62.8
25 5× 10−5, 1024, 2 6.9M 57.8
55 5× 10−5, 1024, 2 6.9M 64.4

105 5× 10−5, 1024, 2 6.9M 66.4
1,700 5× 10−5, 1024, 2 6.9M 84.7

PRPN 0 1× 10−3, 400 10.8M 97.5 (ppl.)
15 1× 10−3, 200 8.4M 43.5
25 1× 10−3, 400 10.8M 41.9
55 1× 10−3, 200 8.4M 43.4

105 1× 10−3, 400 10.8M 41.7
1,700 1× 10−3, 400 10.8M 44.7

ON-LSTM 0 20, 400 18.4M 69.2 (ppl.)
15 20, 200 16.2M 52.1
25 20, 200 16.2M 49.8
55 30, 400 18.4M 50.1

105 30, 400 18.4M 49.4
1,700 30, 400 18.4M 51.9

DIORA 0 TreeLSTM, 1× 10−3, 3, 200 1.1M 0.15 (recons. loss.)
15 MLP, 1× 10−3, 10, 200 0.5M 47.0
25 MLP, 1× 10−3, 10, 200 0.5M 47.1
55 MLP, 1× 10−3, 10, 200 0.5M 47.3

105 MLP, 1× 10−3, 10, 200 0.5M 45.8
1,700 MLP, 1× 10−3, 10, 200 0.5M 46.7

Compound PCFG 0 1× 10−3, 40, 60 34.7M 258.4 (ppl. upper bound)
15 1× 10−3, 30, 60 34.1M 43.1
25 1× 10−3, 30, 60 34.1M 45.1
55 1× 10−3, 30, 60 34.1M 39.9

105 1× 10−3, 30, 60 34.1M 41.2
1,700 1× 10−3, 30, 60 34.1M 40.4

Table 5: The best performing sets of hyperparameters with respect to each investigated criterion, as well as
corresponding validation performance (on the corresponding development set, i.e., the first several or no labeled
examples in WSJ Section 22). The hyperparameter values are given by the order mentioned in A.2. # Available Ex.
denotes the number of available (labeled) examples. # Params denotes number of (trainable) model parameters,
estimated in the setting that the vocabulary size |V | = 35K. The performance without parenthesis is in terms of
F1 score; ppl. denotes language model perplexity; recons. loss denotes the reconstruction loss.

Model # Epoch Time

Benepar 100 0.2h
Benepar + SUB 100 4h

PRPN 100 30h
ON-LSTM 100 28h

DIORA 100 18h
Compound PCFG 12 96h

Table 6: The number of epoch and estimated run time
of each model.

across 5 runs. Due to space limitation, we do not
include the standard deviation plot. We show the
full plot in Figure 3. All the standard deviations
are less than 3.
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DEBUG 0
MAX ERROR 0
CUTOFF LEN 10000
LABELED 0
DELETE LABEL TOP
DELETE LABEL -NONE-
DELETE LABEL ,
DELETE LABEL :
DELETE LABEL ‘‘
DELETE LABEL ’’
DELETE LABEL .
DELETE LABEL -LRB-
DELETE LABEL -RRB-

Table 7: The hyperparameters used for evalb.
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Figure 3: The average F1 score and standard devia-
tion, across 5 runs with the same hyperparameters (Ta-
ble 5) different random seeds and different labeled de-
velopment examples when applicable. The top part (F1
score) is the same as Figure 2 in our paper.


