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Abstract

Knowledge graphs (KGs) can vary greatly
from one domain to another. Therefore su-
pervised approaches to both graph-to-text gen-
eration and text-to-graph knowledge extrac-
tion (semantic parsing) will always suffer from
a shortage of domain-specific parallel graph-
text data; at the same time, adapting a model
trained on a different domain is often impos-
sible due to little or no overlap in entities and
relations. This situation calls for an approach
that (1) does not need large amounts of anno-
tated data and thus (2) does not need to rely
on domain adaptation techniques to work well
in different domains. To this end, we present
the first approach to unsupervised text gener-
ation from KGs and show simultaneously how
it can be used for unsupervised semantic pars-
ing. We evaluate our approach on WebNLG
v2.1 and a new benchmark leveraging scene
graphs from Visual Genome. Our system out-
performs strong baselines for both text<+graph
conversion tasks without any manual adapta-
tion from one dataset to the other. In additional
experiments, we investigate the impact of us-
ing different unsupervised objectives.'

1 Introduction

Knowledge graphs (KGs) are a general-purpose
approach for storing information in a structured,
machine-accessible way (Van Harmelen et al.,
2008). They are used in various fields and domains
to model knowledge about topics as different as lex-
ical semantics (Fellbaum, 2005; van Assem et al.,
2006), common sense (Speer et al., 2017; Sap et al.,
2019), biomedical research (Wishart et al., 2018)
and visual relations in images (Lu et al., 2016).
This ubiquity of KGs necessitates interpretabil-
ity because diverse users — both experts and non-
experts — work with them. Even though, in prin-

'https://github.com/mnschmit/
unsupervised-graph-text-conversion

ciple, a KG is human-interpretable, non-experts
may have difficulty making sense of it. Thus, there
is a need for methods, such as automatic natural
language generation (“graph—text”), that support
them.

Semantic parsing, i.e., the conversion of a text to
a formal meaning representation, such as a KG,
(“text—graph”) is equally important because it
makes information that only exists in text form
accessible to machines, thus assisting knowledge
base engineers in KG creation and completion.

As KGs are so flexible in expressing various
kinds of knowledge, separately created KGs vary a
lot. This unavoidably leads to a shortage of training
data for both graph<>text tasks. We therefore pro-
pose an unsupervised model that (1) easily adapts
to new KG domains and (2) only requires unla-
beled (i.e., non-parallel) texts and graphs from the
target domain, together with a few fact extraction
heuristics, but no manual annotation.

To show the effectiveness of our approach, we
conduct experiments on the latest release (v2.1)
of the WebNLG corpus (Shimorina and Gardent,
2018) and on a new benchmark we derive from
Visual Genome (Krishna et al., 2016). While both
of these datasets contain enough annotations to
train supervised models, we evaluate our unsuper-
vised approach by ignoring these annotations. The
datasets are particularly well-suited for our evalua-
tion as both graphs and texts are completely human-
generated. Thus for both our tasks, models are eval-
uated with natural, i.e., human-generated targets.

Concretely, we make the following contribu-
tions: (1) We present the first unsupervised
non-template approach to text generation from KGs
(graph—-text). (2) We jointly develop a new unsu-
pervised approach to semantic parsing that automat-
ically adjusts to a target KG schema (text—graph).
(3) In contrast to prior unsupervised graph—text
and text—graph work, our model does not re-
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quire manual adaptation to new domains or graph
schemas. (4) We provide a thorough analysis of the
impact of different unsupervised objectives, espe-
cially the ones we newly introduce for text<>graph
conversion. (5) We create a new large-scale dataset
for text<+>graph transformation tasks in the visual
domain.

2 Related Work

graph — text. Our work is the first attempt at fully
unsupervised text generation from KGs. In this re-
spect it is only comparable to traditional rule- or
template-based approaches (Kukich, 1983; McRoy
et al., 2000). However, in contrast to these ap-
proaches, which need to be manually adapted to
new domains and KG schemas, our method is gen-
erally applicable to all kinds of data without modi-
fication.

There is a large body of literature about super-
vised text generation from structured data, notably
about the creation of sports game summaries from
statistical records (Robin, 1995; Tanaka-Ishii et al.,
1998). Recent efforts make use of neural encoder-
decoder mechanisms (Wiseman et al., 2017; Pudup-
pully et al., 2019). Although text creation from
relational databases is related and our unsupervised
method is, in principle, also applicable to this do-
main, in our work we specifically address text cre-
ation from graph-like structures such as KGs.

One recent work on supervised text creation
from KGs is (Bhowmik and de Melo, 2018). They
generate a short description of an entity, i.e., a sin-
gle KG node, based on a set of facts about the
entity. We, however, generate a description of the
whole KG, which involves multiple entities and
their relations. Koncel-Kedziorski et al. (2019)
generate texts from whole KGs. They, however,
do not evaluate on human-generated KGs but au-
tomatically generated ones from the scientific in-
formation extraction tool ScilE (Luan et al., 2018).
Their supervised model is based on message pass-
ing through the topology of the incidence graph of
the KG input. Such graph neural networks (Kipf
and Welling, 2017; Velickovi€ et al., 2018) have
been widely adopted in supervised graph-to-text
tasks (Beck et al., 2018; Damonte and Cohen, 2019;
Ribeiro et al., 2019, 2020).

Even though Marcheggiani and Perez-
Beltrachini (2018) report that graph neural
networks can make better use of graph input than
RNNs for supervised learning, for our unsuper-

vised approach we follow the line of research that
uses RNN-based sequence-to-sequence models
(Cho et al., 2014; Sutskever et al., 2014) operating
on serialized triple sets (Gardent et al., 2017b;
Trisedya et al.,, 2018; Gehrmann et al., 2018;
Castro Ferreira et al., 2019; Fan et al., 2019). We
make this choice because learning a common
semantic space for both texts and graphs by
means of a shared encoder and decoder is a
central component of our model. It is a nontrivial,
separate research question whether and how
encoder-decoder parameters can effectively be
shared for models working on both sequential and
non-sequential data. We thus leave the adaptation
of our approach to graph neural networks for
future work.

text — graph. Converting a text into a KG rep-
resentation, our method is an alternative to prior
work on open information extraction (Niklaus
et al., 2018) with the advantage that the extractions,
though trained without labeled data, automatically
adjust to the KGs used for training. It is therefore
also related to relation extraction in the unsuper-
vised (Yao et al., 2011; Marcheggiani and Titov,
2016; Simon et al., 2019) and distantly supervised
setting (Riedel et al., 2010; Parikh et al., 2015).
However, these systems merely predict a single
relation between two given entities in a single sen-
tence, while we translate a whole text into a KG
with potentially multiple facts.

Our text—graph task is therefore most closely re-
lated to semantic parsing (Kamath and Das, 2019),
but we convert statements into KG facts whereas se-
mantic parsing typically converts a question into a
KG or database query. Poon and Domingos (2009)
proposed the first unsupervised approach. They,
however, still need an additional KG alignment
step, i.e., are not able to directly adjust to the target
KG. Other approaches overcome this limitation but
only in exchange for the inflexibility of manually
created domain-specific lexicons (Popescu et al.,
2004; Goldwasser et al., 2011). Poon (2013)’s ap-
proach is more flexible but still relies on prepro-
cessing by a dependency parser, which generally
means that language-specific annotations to train
such a parser are needed. Our approach is end-
to-end, i.e., does not need any language-specific
preprocessing during inference and only depends
on a POS tagger used in the rule-based text— graph
system to bootstrap training.

Unsupervised sequence generation. Our unsu-
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pervised training regime for both text«>graph tasks
is inspired by (Lample et al., 2018b). They used
self-supervised pretraining and backtranslation for
unsupervised translation from one language to an-
other. We adapt these principles and their noise
model to our tasks, and introduce two new noise
functions specific to text<>graph conversion.

3 Preliminaries

3.1 Data structure

We formalize a KG as a labeled directed multigraph
(V, E, s,t,1) where entities are nodes V' and edges
I represent relations between entities. The lookup
functions s,t : FF — V assign to each edge its
source and target node. The labeling function [
assigns labels to nodes and edges where node la-
bels are entity names and edge labels come from a
predefined set R of relation types.

An equivalent representation of a KG is the set
of its facts. A fact is a triple consisting of an edge’s
source node (the subject), the edge itself (the predi-
cate), and its target node (the object). So the set of
facts F of a KG can be obtained from its edges:

F:={(s(e),e,t(e)) |ec E}.

Applying [ to all triple elements and writing out
F in an arbitrary order generates a serialization
that makes the KG accessible to sequence models
otherwise used only for text. This has the advantage
that we can train a sequence encoder to embed text
and KGs in the same semantic space. Specifically,
we serialize a KG by writing out its facts separated
with end-of-fact symbols (EOF) and elements of
each fact with special SEP symbols. We thus define
our task as a sequence-to-sequence (seq2seq) task.

3.2 Scene Graphs

The Visual Genome (VG) repository is a large col-
lection of images with associated manually anno-
tated scene graphs; see Fig. 1. A scene graph for-
mally describes image objects with their attributes,
e.g., (hydrant, at t r, yellow), and their relations to
other image objects, e.g., (woman, in, shorts). Each
scene graph is organized into smaller subgraphs,
known as region graphs, representing a subpart of
a more complex larger picture that is interesting
on its own. Each region graph is associated with
an English text, the region description. Texts and
graphs were not automatically produced from each
other, but were collected from crowdworkers who

man jumping over
fire hydrant

yellow fire hydrant

jumping over

fire hydrant

Figure 1: Region graphs and textual region descriptions
in Visual Genome (VG). Image regions serve as com-
mon reference for text and graph creation but are disre-
garded in our work. We solely focus on the pairs of cor-
responding texts and graphs. Illustration adapted from
(Krishna et al., 2016).

attr

wrapped in blanket
Sttr attr
baseball hat

Figure 2: Example graph in our new VG benchmark.

were presented an image region and then gener-
ated text and graph. So although the graphs were
not specifically designed to closely resemble the
texts, they describe the same image region. This
semantic correspondence makes scene graph<>text
conversion an interesting and challenging problem
because text and graph are not simple translations
of each other.

Scene graphs are formalized in the same way
as other KGs: V here contains image objects and
their attributes, and R contains all types of visual
relationships and the special label att r for edges
between attribute and non-attribute nodes. Fig. 2
shows an example.

VG scene graphs have been used before for tra-
ditional KG tasks, such as KG completion (Wan
et al., 2018), but we are the first to use them for a
text<>graph conversion dataset.

4 Approaches

4.1 Rule-based systems

We propose a rule-based system as unsupervised
baseline for each of the text<>graph tasks. Note
that they both assume that the texts are in English.
Reraph=text Brom a KG serialization, we remove
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noise function  behavior

swap applies a random permutation o of words or facts with

Vie{l,...,n},|o(i) —i| < k; k = 3 for text, k = +o0 for knowledge graphs.
drop removes each fact/word with a probability of parop.
blank replaces each fact/word with a probability of pyank by a special symbol blanked.
repeat inserts repetitions with a probability of prepear in @ sequence of facts/words.
rule generates a noisy translation by applying Reraph—text to a graph or Rtext—graph to a text.

Table 1: Noise functions and their behavior on graphs and texts.

Man wearing a colorful shirt and white pants ‘

lrule

Man SEP wearing SEP colorful EOF
shirt SEP attr SEP colorful EOF
pants SEP attr SEP white EOF
pants SEP playing SEP tennis

lblank o drop o swap

ﬁlm

pants SEP attr SEP white EOF
EOF
blanked

lrepeat

pants SEP attr SEP white EOF
shirt SEP attr SEP colorful EOF
shirt SEP attr SEP colorful EOF
blanked

Figure 3: Example noisy training instance for the
graph—text task in the composed noise setting. The
fact highlighted in red is removed by drop, the one in
blue is replaced with blanked by blank, the one in
orange is repeated by repeat.

SEP symbols and replace EOF symbols by the
word and. The special label att r is mapped to is.
This corresponds to a template-based enumeration
of all KG facts. See Table 5 for an example.
Riext—eravh A fter preprocessing a text with NLTK’s
default POS tagger (Loper and Bird, 2004) and re-
moving stop words, we apply two simple heuristics
to extract facts: (1) Each verb becomes a predi-
cate; is creates facts with predicate attr. The
content words directly before and after such a pred-
icate word become subject and object. (2) Adjec-
tives ¢ form attributes, i.e., build facts of the form
(X,attr,a) where X is filled with the first noun
after a. These heuristics are similar in nature to a
rudimentary parser. See Table 8 for an example.

4.2 Neural seq2seq systems

Our main system is a neural seq2seq architecture.
We equip the standard encoder-decoder model with
attention (Bahdanau et al., 2014) and copy mech-
anism (Gu et al., 2016). Allowing the model to

directly copy from the source to the target side
is beneficial in data to text generation (Wiseman
et al., 2017; Puduppully et al., 2019). The encoder
(resp. decoder) is a bidirectional (resp. unidirec-
tional) LSTM (Hochreiter and Schmidhuber, 1997).
Dropout (Hinton et al., 2012) is applied at the input
of both encoder and decoder (Britz et al., 2017). We
combine this model with the following concepts:
Multi-task model. In unsupervised machine trans-
lation, systems are trained for both translation
directions (Lample et al., 2018b). In the same
way, we train our system for both conversion tasks
text<»graph, sharing encoder and decoder. To tell
the decoder which type of output should be pro-
duced (text or graph), we initialize the cell state
of the decoder with an embedding of the desired
output type. The hidden state of the decoder is ini-
tialized with the last state of the encoder as usual.
Noisy source samples. Lample et al. (2018a) in-
troduced denoising auto-encoding as pretraining
and auxiliary task to train the decoder to produce
well-formed output and make the encoder robust to
noisy input. The training examples for this task con-
sist of a noisy version of a sentence as source and
the original sentence as target. We adapt this idea
and propose the following noise functions for the
domains of graphs and texts: swap, drop, blank,
repeat, rule. Table 1 describes their behavior.
swap, drop and blank are adapted from (Lample
et al., 2018a) with facts in graphs taking the role
of words in text. As order should be irrelevant in a
set of facts, we drop the locality constraint in the
swap permutation for graphs by setting k = +oc.

Denoising samples generated by repeat re-
quires the model to learn to remove redundant in-
formation in a set of facts. In the case of text,
repeat mimics a behavior often observed with in-
sufficiently trained neural models, i.e., repeating
words considered important.

Unlike the other noise functions, rule does not
“perturb” its input, but rather noisily backtranslates
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it. We will see in Section 7 that bootstrapping with
these noisy translations is essential.

We consider two fundamentally different noise
injection regimes: (1) The composed noise setting
is an adaptation of Lample et al. (2018a)’s noise
model (blankodroposwap) where our newly intro-
duced noise functions rule and repeat are added
to the start and end of the pipeline, i.e., all data sam-
ples are treated equally with the same noise func-
tion Ceomp := repeatoblankodroposwaporule.
Figure 3 shows an example. (2) In the sampled
noise setting, we do not use all noise functions at
once but sample a single one per data instance.

4.3 Training regimes

We denote the sets of graphs and corresponding
texts by G and 7. The set of available supervised
examples (z,y) € G x T iscalled S C G x T.
P, and P; are probabilistic models that generate,
conditioned on any input, a graph (g) or a text (¢).
Unsupervised training. We first obtain a language
model for both graphs and text by training one
epoch with the denoising auto-encoder objective:

Edenoise — xINEg[— log Pg(.fC‘C(iU))] +
ET[— log P(y|C(y))]
~

where C' € {Ceomp } for composed noise and C' €
{swap, blank, drop, repeat, rule} for sampled
noise. In this pretraining epoch only, we use all pos-
sible noise functions individually on all available
data. As sampled noise incorporates five different
noise functions and composed noise only one, this
results in five times more pretraining samples for
sampled noise than for composed noise.

In subsequent epochs, we additionally consider
L5k a5 training signal:

L% = E [~log Py(a]=" (@))] +

T

y@T[_ log P (y|w*(y))]

2*(z) = arg max Py(z|x)
4

w*(y) = arg max Py(wl|y)

This means that, in each iteration, we apply the
current model to backtranslate a text (graph) to
obtain a potentially imperfect graph (text) that we
can use as noisy source with the clean original input
being the target. This gives us a pseudo-parallel
training instance for the next iteration — recall that

VG VGball WebNLG

train split size 2,412,253 151,790 34,338
val split size 323,478 21,541 4,313
test split size 324,664 20,569 4,222
#relation types 36,506 5,167 373
avg #facts in graph 2.7 2.5 3.0
avg #tokens in text 54 5.5 22.8
avg % text tokens in graph 49.3 50.6 494
avg % graph tokens in text 52.3 54.7 75.6

Table 2: Statistics of WebNLG v2.1 and our newly cre-
ated benchmark VG; VGyy is a subset of VG represent-
ing images from ball sports events. Data split sizes are
given as number of graph-text pairs.

we address unsupervised generation, i.e., without
access to parallel data.

The total loss in these epochs is £k 4 £denoise.
where now £9m°¢ only samples one possible type
of noise independently for each data instance.
Supervised training. Our intended application is
an unsupervised scenario. For our two datasets,
however, we have labeled data (i.e., a “parallel cor-
pus”) and so can also compare our model to its
supervised variant. Although supervised perfor-
mance is generally better, it serves as a reference
point and gives us an idea of the impact of supervi-
sion as opposed to factors like model architecture
and hyperparameters. The supervised loss is simply
defined as follows:

Lw= E

w5 [Flog Pilylz) — log Fy(zly)

5 Experiments

5.1 Data

For our experiments, we randomly split the VG
images 80/10/10 into train/val/test. We then re-
move all graphs from train that also occur in one
of the images in val or test. Finally, we unify
graph serialization duplicates with different texts
to single instances with multiple references for
graph—text and proceed analogously with text du-
plicates for text—graph. For WebNLG v2.1, we
use the data splits as provided. Following (Gardent
et al., 2017a), we resolve the camel case of relation
names and remove underscores from entity names
in a preprocessing step. For both datasets, the order
of facts in graph serializations corresponds to the
order of triples in the original dataset. Because
of VG’s enormous size and limited computation
power, we additionally create a closed-domain ball
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Visual Genome WebNLG
graph — text BLEU METEOR CHRF++ BLEU METEOR CHRF++
val test val test val test val test val test val test
Rgraph—text 5.9 59 282 281 434 433 183 183 335 336 550 552
Ours w/ sampled noise 19.8 195 314 312 509 507 391 377 354 355 619 621
Ours w/ composed noise  23.2 232 33.0 329 537 536 308 305 302 300 531 528
Ours supervised 26.5 264 323 322 537 536 351 344 396 395 641 64.0

Table 3: Results for unsupervised and supervised text generation. Note that training a supervised model on millions
of labeled samples is usually not an option. Best unsupervised models are identified by best BLEU on V9. BLEU
and METEOR are computed with scripts from (Lin et al., 2018); the CHRF++ script is from (Popovié, 2017b).

sports subset of VG, called VGy,;, which we can
use to quickly conduct additional experiments (see
Section 7). We identify all images where at least
one region graph contains at least one fact that men-
tions an object ending with ball and take all regions
from them (keeping data splits the same). In con-
trast to alternatives like random subsampling, we
consider this domain-focused construction more
realistic.

Table 2 shows relevant statistics for all datasets.
While VG and WebNLG have similar statistics,
VG is around 70 times larger than WebNLG, which
makes it an interesting benchmark for future re-
search, both supervised and unsupervised. Apart
from size, there are two important differences:
(1) The VG graph schema has been freely defined
by crowd workers and thus features a large variety
of different relations. (2) The percentage of graph
tokens occurring in the text, a measure important
for the text— graph task, is lower for VG than for
WebNLG. Thus, VG graphs contain more details
than their corresponding texts, which is a character-
istic feature of the domain of image captions: they
mainly describe the salient image parts.

5.2 Training details

We train all models with the Adam optimizer
(Kingma and Ba, 2015) for maximally 30 epochs.
We stop supervised models early when £5P does
not decrease on val for 10 epochs. Unsupervised
models are stopped after 5 iterations on VG be-
cause of its big size and limited computational re-
sources. All hyperparameters and more details are
described in Appendices A and B. Our implemen-
tation is based on AllenNLP (Gardner et al., 2017).

In unsupervised training, input graphs and texts
are the same as in supervised training — only the
gold target sides are ignored. While it is an arti-
ficial setup to split paired data and treat them as

sampled noise composed noise

# U Vioo val test U Vioo val test
1/8.4 78 101 99722 159 19.8 19.7
21507 72 92 9.1 (412 140 152 15.1
3167.6 195 194 19.2|61.0 227 235 234
41564 212 198 195|519 222 214 213
51629 200 196 194|605 245 232 232

Table 4: BLEU scores on VG for our unsupervised
models evaluated for graph—text at different iterations.
U is calculated on all unlabeled data used for training.
V100 is a 100-size random sample from val. All results
are computed with scripts from (Lin et al., 2018).

unpaired, this not only makes the supervised and
unsupervised settings more directly comparable,
but also ensures that the text data resemble the eval-
uation texts in style and domain. For the purpose
of experiments on a benchmark, this seems appro-
priate to us. For a concrete use case, it would be an
important first step to find adequate texts that show-
case the desired language style and that are about a
similar topic as the KGs that are to be textualized.
As KGs are rarely the only means of storing in-
formation, e.g., in an industrial context, such texts
should not be hard to come by in practice.

6 Results and Discussion

6.1 Text generation from graphs

Model selection. Table 4 shows how performance
of our unsupervised model changes at every back-
translation iteration, measured in BLEU (Papineni
et al., 2002), a common metric for natural language
generation. For model selection, we adopt the two
methods proposed by Lample et al. (2018b), i.e.,
a small validation set (we take a 100-size random
subset of val, called V1qp) and a fully unsupervised
criterion (/) where BLEU compares an unlabeled
sample with its back-and-forth translation. We con-
firm their finding that ¢/ is not reliable for neural

7122



(a) Reference text a baseball cap on a baby’s head

sampled noise composed noise

(b) Reraph—text baby is small and baby is # U Vioo val test U Vio val test
wrapped in blanket and hat is

. . 1{191 10 12 12170 20 22 22

pink and hat is baseball hatand 5 | 719 217 191 188 | 493 221 221 217

i g 3] 582 193 186 183 | 459 187 197 19.4

(c¢) Unsuperv. neural small baby wrapped in blanket 41623 183 19.1 188 | 544 199 20.8 20.5

model with pink baseball hat 5637 19.8 19.0 187 | 49.0 18.8 19.0 18.8

(d) Superv. neural model  baby wearing a pink hat

Table 5: Texts generated from graph in Fig. 2.

text generation models whereas V;qg correlates bet-
ter with performance on the larger test sets. We use
V100 for model selection in the rest of this paper.
Quantitative evaluation. Table 3 shows BLEU,
METEOR (Banerjee and Lavie, 2005) and
CHRF++ (Popovic¢, 2017a) for our unsupervised
models and the rule baseline R&*" =% which is
in many cases, i.e., if parallel graph-text data are
scarce, the only alternative.

First, we observe that R&#h =%t performs much
better on WebNLG than VG, indicating that our
new benchmark poses a tougher challenge. Second,
our unsupervised models consistently outperform
this baseline on all metrics and on both datasets,
showing that our method produces textual descrip-
tions much closer to human-generated ones. Third,
noise composition, the general default in unsuper-
vised machine translation, does not always per-
form better than noise sampling. Thus, it is worth-
while to try different noise settings for new tasks
or datasets.

Surprisingly, supervised and unsupervised mod-
els perform nearly on par. Real supervision does
not seem to give much better guidance in train-
ing than our unsupervised regime, as measured by
our three metrics on two different datasets. Some
metric-dataset combinations even favor one of the
unsupervised models. Our qualitative observations
provide a possible explanation for that.
Qualitative observations. Taking a look at exam-
ple generations (Table 5), we also see qualitatively
how much easier it is to grasp the content of our nat-
ural language summarization than reading through
a simple enumeration of KG facts. We find that
the unsupervised model (c) seems to output the KG
information in a more complete manner than its su-
pervised counterpart (d). The supervision probably
introduces a bias present in the training data that
image captions focus on salient image parts and
therefore the supervised model is encouraged to
omit information. As it never sees a corresponding

Table 6: F1 scores on VG for our models from Table 4
evaluated on text—graph at different iterations.

VG WebNLG

text — graph
val  test val test

Rtext— graph 134 13.1 0.0 0.0
Stanford SG Parser 19.5 193 0.0 0.0
Ours w/ sampled noise 19.1 188 385 39.1
Ours w/ composed noise 221 21.7 325 331
Ours supervised 235 23.0 528 528

Table 7: F1 scores of facts extracted by our unsuper-
vised semantic parsing (text—graph) systems and our
model trained with supervision.

text-graph pair together, the unsupervised model
cannot draw such a conclusion.

6.2 Graph extraction from texts

We evaluate semantic parsing (text— graph) perfor-
mance by computing the micro-averaged F1 score
of extracted facts. If there are multiple reference
graphs (cf. Section 5.1), an extracted fact is con-
sidered correct if it occurs in at least one reference
graph. For the ground truth number of facts to be
extracted from a given text, we take the maximum
number of facts of all its reference graphs.

Model selection. Table 6 shows that (compared
to text generation quality) ¢/ is more reliable for
text—graph performance. For sampled noise, it cor-
rectly identifies the best iteration, whereas for com-
posed noise it chooses second best. In both noise
settings, V100 perfectly chooses the best model.
Quantitative observations. Table 7 shows a com-
parison of our unsupervised models with two
rule-based systems, our R®~&#" and the highly
domain-specific Stanford Scene Graph Parser
(SSGP) by Schuster et al. (2015).

We choose these two baselines to adequately
represent the state of the art in the unsupervised set-
ting. Recall from Section 2 that the only previous
unsupervised works either cannot adapt to a target
graph schema (open information extraction), which
means their precision and recall of retrieved facts
is always 0, or have been created for SQL query
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Input sentence Man wearing a colorful shirt and white

pants playing tennis

Reference (RG) (shirt, at t r, colorful)
(pants, attr, white)
(man, wearing, shirt)
(man, wearing, pants)
Rtext—graph

Stanford Scene

Graph Parser

Unsuperv. model

w/ composed noise

(man, playing, tennis)

Supervised model

Table 8: Example fact extractions and evaluation wrt
reference graph (RG). Green: correct (€ RG). Yellow:
acceptable fact, but ¢ RG. Red: incorrect (¢ RG).

generation from natural language questions (Poon,
2013), a related task that is yet so different that
an adaptation to triple set generation from natural
language statements is nontrivial. While rule-based
systems do not automatically adapt to new graph
schemas either, R & and SSGP were at least
designed with the scene graph domain in mind.
Although SSGP was not optimized to match the
scene graphs from VG, its rules were still engi-
neered to cover typical idiosyncrasies of textual im-
age descriptions and corresponding scene graphs.
Besides, we evaluate it with lemmatized reference
graphs because it only predicts lemmata as predi-
cates. All this gives it a major advantage over the
other presented systems but it is nonetheless out-
performed by our best unsupervised model — even
on VG. This shows that our automatic method can
beat even hand-crafted domain-specific rules.
Both Rt*t~eraph and SSGP fail to predict any fact
from WebNLG. The DBpedia facts from WebNLG
often contain multi-token entities while R'x!—&rph
only picks single tokens from the text. Likewise,
SSGP models multi-token entities as two nodes

VGball WebNLG

g—t  t—g g—t  t—g

BLEU F1 BLEU F1

No noise 0.9 0.0 14.8 0.0
sample all noise funs 199 173 39.1 385
compose all noise funs 19.6  19.0 30.8 325
use only rule 19.5 185 374 310
use only swap 0.9 0.0 13.1 0.0
use only drop 0.9 0.0 399 30.1
use only blank 0.9 0.0 14.9 0.0
use only repeat 1.1 0.0 15.7 0.0
sample all but rule 0.9 0.0 14.9 0.0
sample all but swap 192 170 39.6 373
sample all but drop 195 16.0 39.2 353
sample all but blank 199 175 41.0 370
sample all but repeat 204 16.6 36.7 37.1
comp. all but rule 0.9 0.0 13.5 0.0
comp. all but swap 202 163 359 408
comp. all but drop 215 18.6 364 41.1
comp. all but blank 202 163 348 404
comp. all but repeat 211 201 385 423

Table 9: Ablation study of our models on val of VGyy
and WebNLG v2.1. Models selected based on V.
Bold: best performance per column and block. Under-
lined: worse than corresponding rule-based system.

with an at t r relation. This illustrates the impor-
tance of automatic adaptation to the target KG. Al-
though our system uses R**~¢" during unsuper-
vised training and is similarly not adapted to the
WebNLG dataset, it performs significantly better.
Supervision helps more on WebNLG than on VG.
The poor performance of R~ on WebNLG is
probably a handicap for unsupervised learning.
Qualitative observations. Table 8 shows exam-
ple facts extracted by different systems. Rt —&raph
and SSGP are both fooled by the proximity of the
noun pants and the verb play whereas our model
correctly identifies man as the subject. It, however,
fails to identify shirt as an entity and associates the
two attributes colorful and white to pants. Only the
supervised model produces perfect output.

6.3 Noise and translation completeness

Sampled noise only creates training pairs that either
are complete rule-based translations or reconstruc-
tion pairs from a noisy graph to a complete graph
or a noisy text to a complete text. In contrast, com-
posed noise can introduce translations from a noisy
text to a complete graph or vice versa and thus
encourage a system to omit input information (cf.
Fig. 3). This difference is mirrored nicely in the
results of our unsupervised systems for both tasks:
composed noise performs better on VG where omit-
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ted information in an image caption is common and
sampled noise works better on WebNLG where the
texts describe their graphs completely.

7 Noise Ablation Study

Our unsupervised objectives are defined by differ-
ent types of noise models. Hence, we examine
their impact in a noise ablation study. Table 9
shows results for text— graph and graph—text on
the validation splits of VGy,; and WebNLG.

For both datasets and tasks, introducing varia-
tion via noise functions is crucial for the success
of unsupervised learning. The model without noise
(i.e., C(z) = x) fails completely as do all models
lacking rule as type of noise, the only exception
being the only-drop system on WebNLG. Even
though drop seems to work equally well in this one
case, the simple translations delivered by our rule-
based systems clearly provide the most useful in-
formation for the unsupervised models — notably in
combination with the other noise functions: remov-
ing rule and keeping all other types of noise (cf.
“sample all but rule” and “comp. all but rule”)
performs much worse than leaving out drop.

We hypothesize that our two rule systems
provide two important pieces of information:
(1) Remph=text helpg distinguish data format tokens
from text tokens and (2) R'~#2Ph helps find prob-
able candidate words in a text that form facts for
the data output. As opposed to machine translation,
where usually every word in a sentence is trans-
lated into a fluent sentence in the target language,
identifying words that probably form a fact is more
important in data-to/from-text generation.

We moreover observe that our unsupervised
models always improve on the rule-based sys-
tems even when rule is the only type of noise:
graph—text BLEU increases from 6.2/18.3 to
19.5/37.4 on VGy,/WebNLG and text—graph F1
from 14.4/0.0 to 18.5/31.0.

Finally, our ablation study makes clear that there
is no best noise model for all datasets and tasks.
We therefore recommend experimenting with both
different sets of noise functions and noise injection
regimes (sampled vs. composed) for new data.

8 Conclusion

We presented the first fully unsupervised approach
to text generation from KGs and a novel ap-
proach to unsupervised semantic parsing that au-
tomatically adapts to a target KG. We showed

the effectiveness of our approach on two datasets,
WebNLG v2.1 and a new text<+graph benchmark
in the visual domain, derived from Visual Genome.
We quantitatively and qualitatively analyzed our
method on text<>graph conversion. We explored
the impact of different unsupervised objectives in
an ablation study and found that our newly in-
troduced unsupervised objective using rule-based
translations is essential for the success of unsuper-
vised learning.
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A Hyperparameters

We use the following settings for all our experi-
ments: learning rate of 10~4, word embeddings of
size 300, an LSTM hidden size of 250, a dropout
rate of 0.2 and a batch size of 10. Following Lam-
ple et al. (2018b), we set pplank = Prepear = 0.2,
pdrop = 0.1. For inference, we decode greedily
with a maximum number of 40 decoding steps. To
speed up unsupervised learning, we increase the
batch size to 64 when creating backtranslations.

B Model details

We train with homogeneous batches of one target
output type (text or graph) at a time. We use a
single GeForce GTX 1080 GPU for training and in-
ference. In this environment, pure training takes ap-
proximately 9 ms per instance and inference, which
also means backtranslation, takes approximately 21
ms per instance. This means that unsupervised
learning approximately needs 30 ms per instance.
WebNLG models use 10.6 million parameters, VG
models have 60.7 million parameters. The differ-
ence is due to a larger vocabulary size of 70,800
for VG compared to 8,171 for WebNLG.

C Results of all iterations on WebNLG

See Table 10 for all intermediate graph—text re-
sults of unsupervised training on WebNLG and
Table 11 for text—graph. We find similar trends as
for VG (Tables 4 and 6) except for I/ being a less
reliable performance indicator for text—graph in
the sampled noise setting.

sampled noise
U Vioo val ‘ u

91.7 128 13.0|23.0 159 155
94.0 147 158|532 222 20.7
852 255 260|710 232 228
659 277 288|752 253 262
65.5 314 30.7|692 259 272
58.1 315 310|715 276 27.7
48.0 313 323|792 290 27.7
483 328 334|525 28.1 275
37.5 332 340|571 305 300
10 | 42.1 328 334|524 306 299
11 | 387 347 348|599 320 31.6
12 | 38.7 364 362|421 304 308
131393 335 351|500 307 30.7
14 | 405 369 36.6 |46.7 309 30.7
15418 365 375|482 31.1 303
16 | 43.2 369 38.0|43.7 303 29.6
17 1 39.1 356 36.6|43.1 29.0 29.7
18 | 385 375 383 |31.1 29.7 298
19 | 38.8 37.8 384|395 29.0 29.8
20 | 375 372 38.6|362 313 29.8
21 | 364 368 384|352 300 30.8
22 | 448 363 39.7|37.6 324 30.7
23 140.8 358 382|396 314 303
24 1358 392 39.6|39.6 324 303
25 140.6 385 395|370 332 309
26 | 36.8 389 403|413 323 30.2
27 | 441 39.7 40.6 | 37.3 33.0 304
28 1393 369 389 (39.0 34.7 30.8
29 | 36.1 37.6 38.6|415 31.0 30.6
30 | 38.7 40.7 39.1|429 30.6 30.0

composed noise

ETS

V100 val

O 0NN W~

Table 10: BLEU scores on WebNLG for our unsuper-
vised models evaluated for graph—text at different it-
erations. U/ is calculated on all unlabeled data used for
training. Vjgo is a 100-size random sample from val.
All results are computed with scripts from (Lin et al.,
2018).
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sampled noise

composed noise

B =3

U Vioo

val |

U Vioo

val

69.4
64.0
35.6
47.8
39.2
39.2
45.8
50.0
54.9
10 | 58.3
11| 625
12 | 54.2
13| 57.1
14 | 37.5
15 | 48.0
16 | 52.0
17 | 50.0
18 | 48.0
19 | 56.0
20 | 60.0
21| 51.0
22 1553
23| 449
24 | 58.8
25 | 46.8
26 | 53.8
27 | 62.5
28 | 55.3
29 | 56.0
30 | 59.6

O 00T BN —

23.1
255
25.7
279
26.7
32.1
323
31.0
323
349
343
384
39.6
40.6
41.8
41.0
40.7
419

0.0

28.9
30.1
304
32.0
32.7
33.7
34.1
36.3
36.4
374
37.0
38.5

0.0
16.2

7.5
37.5
353
44.9
58.3
51.1
53.1
51.1
53.8
583
47.8
49.0
542
46.2
35.6
522
58.3
553
59.3
62.5
54.9
61.2
583
542
50.0
40.8
58.8
53.8

27.8
26.4
26.4
27.6
31.7
34.0
31.5
333
34.4
339
32.6
29.5
31.6

28.1
29.2
30.7
32.0
32.6
324
33.1
325
333
33.7
33.7
334

Table 11: F1 scores on WebNLG for our unsupervised
models evaluated for text—graph at different iterations.
U is calculated on all unlabeled data used for training.

V100 is a 100-size random sample from val.
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