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Abstract

There is an increasing interest in developing
text-based relational reasoning systems, which
are capable of systematically reasoning about
the relationships between entities mentioned
in a text. However, there remains a substantial
performance gap between NLP models for re-
lational reasoning and models based on graph
neural networks (GNNs), which have access to
an underlying symbolic representation of the
text. In this work, we investigate how the struc-
tured knowledge of a GNN can be distilled
into various NLP models in order to improve
their performance. We first pre-train a GNN
on a reasoning task using structured inputs and
then incorporate its knowledge into an NLP
model (e.g., an LSTM) via knowledge distil-
lation. To overcome the difficulty of cross-
modal knowledge transfer, we also employ a
contrastive learning based module to align the
latent representations of NLP models and the
GNN. We test our approach with two state-of-
the-art NLP models on 12 different inductive
reasoning datasets from the CLUTRR bench-
mark and obtain significant improvements.

1 Introduction

The task of text-based relational reasoning—where
an agent must infer and compose relations between
entities based on a passage of text—has received
increasing attention in natural language process-
ing (NLP) (Andreas, 2019). This task has been
especially prominent in the context of systematic
generalization in NLP, with synthetic datasets, such
as CLUTTR and SCAN, being used to probe the
ability of NLP models to reason in a systematic
and logical way (Lake and Baroni, 2018; Sinha
et al., 2019). More generally, these investigations
dovetail with the rising prominence of relational
reasoning throughout machine learning and cogni-
tive science (Alexander et al., 2016; Battaglia et al.,
2018; Hamilton et al., 2017).

However, despite the increased attention and
research on text-based relational reasoning, seri-
ous challenges remain. Perhaps one of the biggest
challenges is the persistent gap between the per-
formance that can be achieved using NLP models
and the performance of structured models—such
as graph neural networks (GNNs)—which perform
relational reasoning based on structured or sym-
bolic inputs. This gap was made particularly ev-
ident in the the CLUTRR benchmark. CLUTRR
includes relational reasoning problems that can
be posed both in textual or symbolic form, and
preliminary investigations using CLUTRR show
that GNN-based models—which leverage the struc-
tured symbolic input—are able to achieve higher
accuracy, better generalization, and are more robust
than purely text-based systems (Sinha et al., 2019).

In this work, we investigate one potential av-
enue to close this gap. We design an approach to
distill the structured knowledge learned by a GNN—
which has access to the underlying symbolic rep-
resentation of a reasoning problem—into an NLP
model. Our goal is to do this knowledge distillation
(Hinton et al., 2015) only during training so that
the NLP model can achieve higher performance at
test time, when only unstructured textual inputs are
available. Due to the challenges inherent in cross-
model knowledge distillation (Tian et al., 2020),
we design an approach that combines both a KL-
based distillation objective (Hinton et al., 2015) and
a contrastive estimation loss (Hjelm et al., 2019),
which aims to maximize the mutual information
between the latent states of text-based NLP and
graph-based GNN models.

Empirical results on 12 different datasets from
the CLUTRR benchmark suite highlight the po-
tential utility of this approach. We find that ex-
tending two state-of-the-art NLP models using our
structured distillation approach significantly im-
proves performance and that the gains are espe-
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cially prominent in the context of noisy input data,
on which we obtain an 13.6% relative improvement
on accuracy.1

2 Related Work

Our work is closely related to recent research on
machine reading comprehension (MRC), question
answering (QA), and relational reasoning in NLP.

Prominent examples of large-scale QA bench-
marks include datasets such as SQuAD (Rajpurkar
et al., 2016) and TriviaQA (Joshi et al., 2017). How-
ever, these traditional datasets do not consider the
reasoning aspect of MRC and only target extrac-
tive QA tasks. Usually, these tasks only require
extracting a single fact (or span of text) and do not
necessitate complex relational reasoning.

To address this shortcoming, there has been a
surge of work tackling the relational reasoning and
systematic generalization. Johnson et al. (2017)
first proposed the CLEVR dataset that focuses on
the relational reasoning aspect of visual question
answering (VQA). Similarly, Sinha et al. (2019)
released CLUTRR involving both text and graphs.
These relational reasoning datasets also share in-
spirations with multi-hop QA, such as HotPotQA
(Yang et al., 2018). Generally, the key distinction
in the multi-hop setting is that an agent must reason
about the relationship between multiple entities in
order to answer a query.

Finally, the development of these relational rea-
soning datasets has also dovetailed with an increas-
ing interest in combining NLP models with graph
neural networks (GNNs) (Hamilton et al., 2017).
This includes the use of GNNs for processing syn-
tax trees (Marcheggiani and Titov, 2017), as well
as the use of GNNs for reasoning over entity graphs
extracted from text (Fang et al., 2019).

3 Task and Dataset

We use the CLUTRR benchmark suite as a
testbed for our investigations (Sinha et al., 2019).
CLUTRR is a relational reasoning dataset that re-
quires an agent to infer family relationships be-
tween different characters in a passage of text. Im-
portantly, the dataset was constructed in a semi-
synthetic fashion, which facilitates a principled in-
vestigation of text-based relational reasoning. Ev-
ery question-answer pair in CLUTRR was gener-
ated based on underlying family graph structure,

1Code and data can be found at https://github.
com/djdongjin/gnnlogic.

where crowd workers were instructed to paraphrase
natural language stories from a given set of family
relations. To answer a question in the CLUTRR
dataset, the model must infer the family relation-
ship between a pair of entities, whose relationship
is not explicitly mentioned. Doing so requires
extracting the family relationships mentioned in
the text and deducing the relationship between the
query entities through inductive reasoning (e.g.,
learning that a parent of a parent is a grandparent.

A key element of CLUTRR is that it provides
both text representations and the underlying family
graphs used to generate the questions. This allowed
Sinha et al. (2019) to compare the performance of
NLP models, which use only text, with GNN-based
models, which reason upon the underlying graph
structure, and their analysis revealed a substantial
gap in performance between the NLP and GNN
models—a gap which we seek to address here.

Moreover, following Sinha et al. (2019), the
semi-synthetic nature of CLUTRR allows us to
evaluate performance in different settings based on
the structure of the underlying family graph and the
difficulty of the query, including evaluating perfor-
mance on queries that require a varying number of
steps of reasoning and family graphs that include
different types of noisy facts (i.e., distractors).

4 Methodology

We now describe our approach for structured distil-
lation, which involves improving the performance
of an NLP model by distilling structured knowl-
edge from a GNN (Fig. 1).
Graph encoder and text encoder. Our base
model architectures follow Sinha et al. (2019), with
minor improvements. As shown in Fig. 1, we im-
plement both a graph encoder, which generates a
vector embedding pgraph based on the input family
graph, as well as a text encoder, which generates
a vector embedding ptext of the input text. We use
a variant of the graph isomorphism network (GIN)
architecture Xu et al. (2019) as our graph encoder,
since we found this model to outperform the GNN
from Sinha et al. (2019). For our text encoders, we
experiment with the two top-performing NLP mod-
els from Sinha et al. (2019): (1) a variation of an
LSTM model with attention (Bahdanau et al., 2015)
and (2) an adapted version of the MAC architecture
(Hudson and Manning, 2018). See Appendix A for
details on the model architectures.

https://github.com/djdongjin/gnnlogic
https://github.com/djdongjin/gnnlogic
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Figure 1: Model architecture with both knowledge distillation and contrastive learning. The supervised signal is
produced in (1) with cross-entropy loss. We first pretrain a GIN model which is used later for knowledge distillation
and contrastive learning. Knowledge distillation module (2) aligns the predictions made by a GIN model and an
NLP model, via KL-divergence loss (Eq. 1). The contrastive learning module (3) aligns the latent space of these
two models via a MI-based contrastive loss (Eq. 2).

Integration with knowledge distillation. We uti-
lize knowledge distillation as a surrogate for the
structured knowledge transfer from GNNs to NLP
models. We take the text encoder as the student
and a pretrained GNN as the teacher. After gener-
ating the representations of the paragraph ptext and
the question entities (h(m),h(n)) , the text encoder
sends the concatenation of these embeddings to an
MLP decoder to obtain the logits ztext. Similarly,
a pretrained GNN can produce logits zgraph from
a given underlying graph. We feed the two logits
into a KL-based distillation term:

LKD = T 2 · KL
(
σ
(ztext

T

) ∣∣∣σ(zgraph

T

))
, (1)

where σ is the softmax function and T is the tem-
perature hyperparameter of softmax.

Integration with contrastive estimation. Al-
though knowledge distillation enables NLP models
to learn directly from the prediction of GNNs, there
is no regularization between their latent represen-
tations. We mitigate this by using a mutual infor-
mation (MI) based contrastive learning method to
maximize the MI between graph representations
from GNNs and paragraph representations from
NLP models. Under our setting, we pair the text
representation ptext and the graph representation
pgraph of the same example as positive pairs, and
take other graph representations in the same batch
as negative pairs. Then, following Hjelm et al.
(2019), we use a Jensen-Shannon estimator to com-

pute the MI, resulting in the contrastive objective:

LMI = −Î(ptext,pgraph) =

− EP(p,g|c=1)

[
−sp(−T (ptext,pgraph))

]
+ EP(p,g|c=0)

[
sp(T (ptext,pgraph)

]
, (2)

where P(p, g|c = 1) and P(p, g|c = 0) indicate
the conditional probability of whether the given
paragraph p and graph g correspond to the same
question-answering example (c = 1) or not (c = 0).
We use sp to denote the softplus function, and we
use T to denote MLP that is trained to discriminate
between positive and negative pairs.

Note that the contrastive loss in Eq. 2 is also
composable with both the supervised cross-entropy
loss (from the original CLUTRR task) and knowl-
edge distillation loss (Eq. 1).

5 Experiments

Our key experimental question is whether an NLP
model can be improved by distilling structured
knowledge from a GNN. We investigate this ques-
tion using the GNN and NLP models defined in the
previous section, and we follow the experimental
protocol from Sinha et al. (2019). We investigate
if and how structured distillation can improve gen-
eralization and robustness. In all experiments, the
NLP models only have access to information from
the GNN during training. Appendix A contains
detailed hyperparameter information.
Impact on generalization. We first test on the
CLUTRR benchmark tasks where the model must
generalize to reasoning problems that require more
steps of reasoning than those seen during training.
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Figure 2: Accuracy on test sets with relation length of 2-10. KD denotes knowledge distillation; CL denotes the
MI-based contrastive learning. All results are averaged over 5 runs with different random seeds. The maximum
standard deviation is less than 0.05. Detailed accuracy values can be found in Appendix B.

Dataset Model
Relation length Distractor MAC MAC+KD+CL LSTM-attn LSTM-attn+KD+CL
2,3 Clean 0.54 0.59 0.54 0.60
2,3 Supporting 0.54 0.57 0.45 0.59
2,3 Irrelevant 0.47 0.52 0.40 0.52
2,3 Disconnected 0.40 0.45 0.41 0.42

Table 1: Accuracy on test sets with different distractors. All results are averaged over 5 runs with different random
seeds. The maximum standard deviation is less than 0.05.

Fig. 2 shows the results when we set the number
of training reasoning steps to be (2, 3) and 3, 4,
and where the test examples require between 2 and
10 reasoning steps. Both of the two NLP model
obtain higher average performance on test sets with
our proposed method. Interestingly, however, the
positive impact of structured distillation is most
apparent when training on examples with longer
reasoning paths. Appendix B contains results from
training on other reasoning path lengths, which are
consistent with the trends in Fig. 2.

Impact on robustness. We next investigated the
impact of structured generalization on how robust
the NLP models are with respect to noise. Follow-
ing Sinha et al. (2019), we examined settings where
different types of noise facts are added into the
CLUTRR reasoning problems. Tab. 1 shows the
results where we train and test on reasoning prob-
lems with different types of noise. Here, we see that
structured distillation consistently and substantially
improves performance of both NLP models, pro-
viding an average 13.6% relative improvement on
accuracy. The results also shows the distillation and
contrastive estimation based on GNNs help NLP
models ignore noise. However, their fundamental
architecture difference limits the extent to which
NLP models can learn from GNNs. Appendix C
contains additional results, where the train and test
sets do not have the same noise added and which

further support this trend.
Ablation analysis. We found that both knowledge
distillation and contrastive estimation (Eq. 1-2)
losses are necessary in tandem to obtain the benefits
of structured generalization. We found no signifi-
cant gains when adding one loss alone. Appendix
D contains detailed results on these ablations.

6 Discussion and Conclusion

Our structured distillation approach achieves
promising results. Most prominently, the struc-
tured distillation approach significantly improved
the performance of the NLP models in settings
where noisy facts were added to the CLUTRR rea-
soning problems. The GNN-based models are par-
ticularly strong in this setting (see Appendix C),
and this suggests that transferring knowledge about
the relevancy of facts from structured to unstruc-
tured models may be a promising direction.

However, at the same time, the improvements for
generalization were less substantial, indicating that
some reasoning capacities are difficult to distill in
this manner. Moreover, despite the improvements
we observed, the performance of the NLP mod-
els is still substantially below the performance of
the GNN teacher used for distillation (see Appen-
dices B & C), highlighting that significant work
that remains to close the gap between the reasoning
performance of text-based and GNN-based models.
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A Hyperparameters

For all experiments in this section, we train the
model for 50 epochs with a batch size of 100. We
use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001.

In the encoder part, we use 100-dimensional
word embeddings and train them from scratch for
all NLP models. For LSTM-based models, we use
a 2-layer bidirectional LSTM with 100 hidden units.
For the MAC network, we use 6 MAC cell units (6
reasoning steps), and 0.2 dropout (Srivastava et al.,
2014) on all updates in the three units to avoid over-
fitting. We use a two-layer MLP with 100 hidden
units as the score function for all attention modules.
For the GIN model, we use 2 GIN layers with 100-
dimensional node embeddings and 20-dimensional
edge embeddings. All node embeddings and edge
embeddings are uniformly initialized.

In the decoder part, we use MLPs with the same
architecture (2 layers, 200 hidden units) for all en-
coders. The inputs will be the concatenation of the
graph representation and two question node repre-
sentations if the encoder is GIN, or the concatena-
tion of the paragraph representation and two word
representations if the encoder is an NLP model.

All hyperparameters were tuned based on the val-
idation accuracy. Full setups and hyperparameters
can be found in the corresponding configuration
files in our codebase after releasing.

For knowledge distillation, the temperature used
to compute KL-divergence loss is 3.5. For con-
trastive learning, the negative sampling size is equal
to the batch size (e.g. 100). The weighting hy-
perparameters for supervised cross-entropy loss,
KL-divergence loss and MI maximization loss are
chosen from {[0.1, 0.6, 0.3], [1, 1, 5]}.

B Full Results on Generalization

Tab. 2 shows all empirical results on datasets that
have different relation lengths in training sets. we
observe that our proposed method can improve the
performance of vanilla NLP models in 7 out of 8
CLUTRR datasets. Another observation is that the

NLP models still cannot learn the superb general-
ization ability of GNNs regardless of the difficulty
of the tasks. The improvement of reasoning ability,
measured by accuracy, is most significant when the
training set and test set have the same reasoning
length. This is not surprising as the generalization
ability is a known issue in modern NLP models and
is an ongoing research topic (Bahdanau et al., 2019;
Andreas, 2019). However, the generalization is in
parallel with our contribution that is to improve the
reasoning ability of NLP models. We refer readers
to (Bahdanau et al., 2019; Andreas, 2019) for a
comprehensive understanding of current progress
in generalization of NLP models.

C Full Result on Robustness

Tab. 3 shows results on the CLUTRR tasks with
various. For each dataset, the training set contains
a single type of noise, and we test on four test sets,
each of which has one different type of distractor.
Our augmented models via knowledge distillation
(KD) and contrastive learning (CL) still outperform
corresponding baselines by 3%-13%, depending on
datasets and models. The MAC+KD+CL achieves
the best accuracy on three out of four CLUTRR
datasets, and LSTM-attn+KD+CL achieves the
best on the left one. This shows that our method is
able to improve the robustness of NLP models as
well.

D Ablation Study on Contrastive
Learning and Knowledge Distillation

We enable knowledge distillation and MI-based
contrastive learning by weighing their correspond-
ing losses as well as the supervised cross-entropy
loss. The three of them can be treated as individual
modules, each of which has different effectiveness.
The cross-entropy loss enables a model to learn
from supervised labels; the knowledge distillation
loss enables a model to learn from soft targets pro-
duced by a teacher model (in our setting, a GIN);
the contrastive learning loss enables a model to
learn latent representations (embeddings) in an un-
supervised manner.

Tab. 4 shows the ablation study among these
three objectives. First we can observe that the best
models trained with our method outperforms the
vanilla MAC network by 3%-13%. Surprisingly, a
MAC network trained with only soft signals pro-
duced by a GIN teacher can match the performance
of a MAC network trained with supervised sig-

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
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nals. If a MAC network is trained with both the
supervised signal and soft signal, it outperforms
the vanilla MAC network on 3 out of 4 CLUTRR
datasets. When the MI-based contrastive learning
loss is added, the MAC network performs the best
on all the four datasets. These observations show
that both knowledge distillation and contrastive
learning are important for the model performance.
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Model — Test relation length 2 3 4 5 6 7 8 9 10
Training relation length: 2, 3

MAC 0.66 0.43 0.42 0.34 0.35 0.30 0.30 0.27 0.29
MAC+KD+CL 0.68 0.51 0.43 0.35 0.33 0.29 0.28 0.27 0.32
LSTM-attn 0.65 0.41 0.43 0.36 0.34 0.32 0.30 0.26 0.30
LSTM-attn+KD+CL 0.67 0.52 0.42 0.34 0.33 0.30 0.28 0.27 0.30

Training relation length: 3, 4
MAC 0.45 0.40 0.29 0.32 0.30 0.28 0.28 0.26 0.28
MAC+KD+CL 0.47 0.46 0.34 0.36 0.32 0.32 0.30 0.33 0.29
LSTM-attn 0.41 0.43 0.34 0.32 0.30 0.30 0.25 0.27 0.27
LSTM-attn+KD+CL 0.53 0.49 0.37 0.37 0.33 0.31 0.29 0.31 0.27

Training relation length: 4, 5
MAC 0.34 0.42 0.34 0.38 0.36 0.34 0.33 0.26 0.31
MAC+KD+CL 0.46 0.44 0.32 0.38 0.36 0.31 0.34 0.31 0.27
LSTM-attn 0.37 0.45 0.37 0.39 0.38 0.33 0.36 0.31 0.35
LSTM-attn+KD+CL 0.41 0.48 0.37 0.41 0.36 0.34 0.36 0.32 0.31

Training relation length: 5, 6
MAC 0.42 0.38 0.39 0.38 0.38 0.38 0.39 0.36 0.38
MAC+KD+CL 0.43 0.37 0.35 0.34 0.35 0.34 0.35 0.34 0.32
LSTM-attn 0.36 0.36 0.36 0.37 0.37 0.38 0.36 0.35 0.37
LSTM-attn+KD+CL 0.37 0.36 0.40 0.37 0.38 0.41 0.40 0.37 0.39

Training relation length: 6, 7
MAC 0.37 0.32 0.38 0.39 0.36 0.40 0.41 0.40 0.38
MAC+KD+CL 0.39 0.35 0.39 0.40 0.39 0.40 0.41 0.40 0.38
LSTM-attn 0.37 0.30 0.37 0.36 0.34 0.39 0.40 0.40 0.34
LSTM-attn+KD+CL 0.44 0.34 0.41 0.40 0.39 0.42 0.46 0.44 0.37

Training relation length: 7, 8
MAC 0.34 0.31 0.35 0.38 0.51 0.40 0.44 0.42 0.44
MAC+KD+CL 0.37 0.35 0.37 0.38 0.50 0.36 0.39 0.39 0.40
LSTM-attn 0.41 0.27 0.34 0.37 0.37 0.40 0.41 0.41 0.41
LSTM-attn+KD+CL 0.42 0.35 0.37 0.43 0.55 0.42 0.45 0.43 0.47

Training relation length: 8, 9
MAC 0.36 0.32 0.35 0.40 0.42 0.42 0.44 0.38 0.45
MAC+KD+CL 0.40 0.32 0.36 0.42 0.41 0.46 0.43 0.37 0.50
LSTM-attn 0.40 0.28 0.31 0.36 0.38 0.39 0.38 0.38 0.46
LSTM-attn+KD+CL 0.40 0.28 0.31 0.36 0.38 0.39 0.38 0.38 0.46

Training relation length: 9, 10
MAC 0.30 0.33 0.35 0.39 0.42 0.42 0.44 0.46 0.43
MAC+KD+CL 0.35 0.36 0.38 0.40 0.43 0.43 0.46 0.45 0.45
LSTM-attn 0.29 0.31 0.34 0.34 0.40 0.39 0.40 0.42 0.39
LSTM-attn+KD+CL 0.32 0.34 0.37 0.38 0.41 0.43 0.44 0.45 0.43

Table 2: Accuracy on test sets with relation length of 2-10. KD denotes knowledge distillation; CL denotes the
MI-based contrastive learning. All results are averaged over 5 runs with different random seeds. The maximum
standard deviation is less than 0.05.
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Model — Test distractor Clean Supporting Irrelevant Disconnected
Training set: no distractor

MAC 0.56 0.49 0.49 0.49
MAC+KD+CL 0.59 0.48 0.55 0.54
LSTM-attn 0.54 0.46 0.50 0.48
LSTM-attn+KD+CL 0.60 0.49 0.57 0.57

Training set: supporting distractor
MAC 0.50 0.54 0.53 0.53
MAC+KD+CL 0.63 0.57 0.56 0.59
LSTM-attn 0.50 0.45 0.46 0.50
LSTM-attn+KD+CL 0.57 0.59 0.59 0.60

Training set: irrelevant distractor
MAC 0.42 0.45 0.47 0.42
MAC+KD+CL 0.48 0.50 0.52 0.46
LSTM-attn 0.37 0.38 0.40 0.39
LSTM-attn+KD+CL 0.49 0.51 0.52 0.45

Training set: disconnected distractor
MAC 0.40 0.41 0.39 0.40
MAC+KD+CL 0.47 0.45 0.44 0.45
LSTM-attn 0.40 0.38 0.37 0.41
LSTM-attn+KD+CL 0.39 0.42 0.39 0.42

Table 3: Accuracy on test sets with different distractors. The distractor types in training sets are given in the
table. We augment the MAC network and LSTM by incorporating graph knowledge from GNNs, via knowledge
distillaton (KD) and contrastive learning (CL). All results are averaged over 5 runs with different random seeds.
The maximum standard deviation is less than 0.05.
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Model — Test distractor Clean Supporting Irrelevant Disconnected
Training set: no distractor

MAC 0.56 0.49 0.49 0.49
MAC+KD(w/o label) 0.55 0.46 0.53 0.54
MAC+KD(w/ label) 0.59 0.47 0.54 0.52
MAC+KD+CL 0.59 0.48 0.55 0.54

Training set: supporting distractor
MAC 0.50 0.54 0.53 0.53
MAC+KD(w/o label) 0.62 0.58 0.56 0.60
MAC+KD(w/ label) 0.62 0.57 0.56 0.59
MAC+KD+CL 0.63 0.57 0.56 0.59

Training set: irrelevant distractor
MAC 0.42 0.45 0.47 0.42
MAC+KD(w/o label) 0.47 0.47 0.49 0.45
MAC+KD(w/ label) 0.48 0.46 0.49 0.44
MAC+KD+CL 0.48 0.50 0.52 0.46

Training set: disconnected distractor
MAC 0.40 0.41 0.39 0.40
MAC+KD(w/o label) 0.36 0.45 0.41 0.42
MAC+KD(w/ label) 0.40 0.41 0.39 0.40
MAC+KD+CL 0.47 0.45 0.44 0.45

Table 4: Ablation study on different learning objectives. MAC means a MAC network trained with only supervised
signals. MAC+KD is a MAC network with knowledge distillation, and we can choose to use labels together with
KD (w/ label) or only use soft target produced by a teacher model (w/o label). MAC+KD+CL is a MAC network
trained with all three objectives: supervised loss, knowledge distillation loss, and contrastive learning loss. We
also tried a model trained with only contrastive learning objective. Its performance is too worse and thus we didn’t
include it in comparison. A possible reason is that a solo contrastive learning based model is usually trained in
two separate periods in which we train an encoder first with contrastive learning, and then train a decoder with
labels according to the evaluation task. In our setting, however, we train an encoder and a decoder all together in
an end-to-end manner. All results are averaged over 5 runs with different random seeds. The maximum standard
deviations is less than 0.05.


