Recurrent Event Network: Autoregressive Structure Inference over
Temporal Knowledge Graphs

Woojeong Jin'

Meng Qu??

Xisen Jin' Xiang Ren'

'Department of Computer Science, University of Southern California
2MILA - Quebec Al Institute
3University of Montréal
{woojeong. jin, xisenjin, xiangren}@usc.edu meng.qu@umontreal.ca

Abstract

Knowledge graph reasoning is a critical task
in natural language processing. The task be-
comes more challenging on temporal knowl-
edge graphs, where each fact is associated with
a timestamp. Most existing methods focus on
reasoning at past timestamps and they are not
able to predict facts happening in the future.
This paper proposes Recurrent Event Network
(RE-NET), a novel autoregressive architecture
for predicting future interactions. The occur-
rence of a fact (event) is modeled as a proba-
bility distribution conditioned on temporal se-
quences of past knowledge graphs. Specifi-
cally, our RE-NET employs a recurrent event
encoder to encode past facts, and uses a neigh-
borhood aggregator to model the connection of
facts at the same timestamp. Future facts can
then be inferred in a sequential manner based
on the two modules. We evaluate our proposed
method via link prediction at future times on
five public datasets. Through extensive exper-
iments, we demonstrate the strength of RE-
NET, especially on multi-step inference over
future timestamps, and achieve state-of-the-art
performance on all five datasets'.

1 Introduction

Knowledge graphs (KGs), which store real-world
facts, are vital in various natural language process-
ing applications (Bordes et al., 2013; Schlichtkrull
et al., 2018; Kazemi et al., 2019). Due to the high
cost of annotating facts, most knowledge graphs
are far from complete, and thus predicting missing
facts (a.k.a., knowledge graph reasoning) becomes
an important task. Most existing efforts study rea-
soning on standard knowledge graphs, where each
fact is represented as a triple of subject entity, ob-
ject entity and the relation between them. How-
ever, in practice, each fact may not be true forever,

"https://github.com/INK-USC/RE-Net

Iran

Criticize Threaten

Praise
South .
Korea Criticize
9,
2 E Threaten
Make a Consult

statement Pakistan @ E
-'

Pakistan
North Macron
Korea Time

t t t;

2 ()
2]
19

¢

Consult

A
_m

Make a
statement

9

Figure 1: Example temporal knowledge subgraphs.
Each edge or interaction between entities is associated
with temporal information and a set of interactions
build a multi-relational graph at each time. Our task is
to predict interactions and build graphs at future times.

and hence it is useful to associate each fact with
a timestamp as a constraint, yielding a temporal
knowledge graph (TKG). Fig. 1 shows example
subgraphs of a temporal knowledge graph. Despite
the ubiquitousness of TKGs, methods for reasoning
over such kind of data are relatively unexplored.

Given a temporal knowledge graph with times-
tamps varying from % to {7, TKG reasoning pri-
marily has two settings - interpolation and extrap-
olation. In the interpolation setting, new facts are
predicted for time ¢ such that tg < ¢ < tp (Garcia-
Duran et al., 2018; Leblay and Chekol, 2018; Das-
gupta et al., 2018). In contrast, extrapolation rea-
soning, as a less studied setting, focuses on predict-
ing new facts (e.g., unseen events) over timestamps
t that are greater than ¢7 (i.e., t > t7). The ex-
trapolation setting is of particular interests in TKG
reasoning as it helps populate the knowledge graph
over future timestamps and facilitates forecasting
emerging events (Muthiah et al., 2015; Phillips
et al., 2017; Korkmaz et al., 2015).

Recent attempts to solve the extrapolation TKG
reasoning problem are Know-Evolve (Trivedi
et al., 2017) and its extension DyRep (Trivedi

6669

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6669—-6683,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

https://github.com/INK-USC/RE-Net

et al., 2019), which predict future events assum-
ing ground truths of the preceding events are given
at inference time. As a result, these methods are
unable to predict events sequentially over future
timestamps without ground truths of the preced-
ing events—i.e., a practical requirement when de-
ploying such reasoning systems for event forecast-
ing (Morstatter et al., 2019). Moreover, these ap-
proaches do not model concurrent events occurring
within the same time window (e.g., a day, or 12
hours), despite their prevalence in real-world event
data (Boschee et al., 2015; Leetaru and Schrodt,
2013). Thus, it is desirable to have a princi-
pled method that can extrapolate graph structures
over future timestamps by modeling the concurrent
events within a time window as a local graph.

To this end, we propose an autoregressive ar-
chitecture, called Recurrent Event Network (RE-
NET), for modeling temporal knowledge graphs.
Key ideas of RE-NET are based on: (1) predicting
future events over multiple time stamps can be for-
mulated as a sequential and multi-step inference
problem; (2) temporally adjacent events may carry
related semantics and informative patterns, which
can further help predict future events (i.e., temporal
information); and (3) multiple events may co-occur
within the same time window and exhibit structural
dependencies between entities (i.e., local graph
structural information).

Given these observations, RE-NET defines the
joint probability distribution of all events in a TKG
in an autoregressive fashion. The probability distri-
bution of the concurrent events at the current time
step is conditioned on all the preceding events (see
Fig. 2 for an illustration). Specifically, a recurrent
event encoder summarizes information of the past
event sequences, and a neighborhood aggregator
aggregates the information of concurrent events
within the same time window. With the summa-
rized information, our decoder defines the joint
probability of a current event. Inference for pre-
dicting future events can be achieved by sampling
graphs over time in a sequential manner.

We evaluate our proposed method on five pub-
lic TKG datasets via a temporal (extrapolation)
link prediction task, by testing the performance of
multi-step inference over time. Experimental re-
sults demonstrate that RE-NET outperforms state-
of-the-art models of both static and temporal knowl-
edge graph reasoning, showing its better capability
to model temporal, multi-relational graph data. We

Encoder Decoder

Aggregator

Figure 2: Illustration of the Recurrent Event Net-
work architecture. The aggregator encodes the global
graph structure and the local neighborhood, capturing
global and local information respectively. The recur-
rent event encoder updates its state with the sequence of
encoded representations of graph structures. The MLP
decoder defines the probability of a current graph.

further show that RE-NET can perform effective
multi-step inference to predict unseen entity rela-
tionships in a distant future.

2 Problem Formulation

We first describe notations for building our model
and problem definition, and then we define the joint
distribution of temporal events.

Notations and Problem Definition. We consider
a temporal knowledge graph as a multi-relational,
directed graph with time-stamped edges between
nodes (entities). An event is defined as a time-
stamped edge, i.e., (subject entity, relation, ob-
ject entity, time) and is denoted by a quadruple
(s,r,0,t) or (s, 1s,0:). We denote a set of events
at time ¢ as GG;. In our setup, the timestamps are
discrete integers and used for the relative order of
graphs or events. A TKG is built upon a sequence
of event quadruples ordered ascending based on
their timestamps, i.e., {Gi}+ = {(Si, 15,04, t)}i
(t; < tj,Vi < j), where each time-stamped edge
has a direction pointing from the subject entity to
the object entity.” The goal of learning genera-
tive models of events is to learn a distribution p(QG)
over TKGs, based on a set of observed event sets
{Gl, ooy Gt}

Approach Overview. The key idea of our ap-
proach is to learn temporal dependency from the
sequence of graphs and local structural dependency
from the neighborhood (Fig. 2). Formally, we rep-
resent TKGs as sequences, and then build an autore-
gressive generative model on the sequences. To this

The same triple (s, r, 0) may occur multiple times in dif-
ferent timestamps, yielding different event quadruples.

6670

end, RE-NET defines the joint probability of con-
current events (or a graph), which is conditioned on
all the previous events. Specifically, RE-NET con-
sists of a Recurrent Neural Network (RNN) as a re-
current event encoding module and a neighborhood
aggregation module to capture the information of
graph structures. We first start with the definition
of joint distribution of temporal events.

Modeling Joint Distribution of Temporal
Events. We define the joint distribution of all the
events G = {Gq,...,Gr} in an autoregressive
manner. Basically, we decompose the joint
distribution into a sequence of conditional dis-
tributions, p(G¢|Gi—m:—1)), where we assume
the probability of the events at a time step, Gy,
depends on the events at the previous m steps,
G¢_m+—1. For each conditional distribution
p(Gt|Gi—m:t—1), we further assume that the events
in GG; are mutually independent given the previous
events G_p,.+—1. In this way, the joint distribution
can be rewritten as follows:

@ =11 T1I

t (st,rt,0t)€G

=11 1I

t (s¢,re,00)EGH

p(St,Yt,Ot\thm:tfl)
p(st|Gt—m,:t—1) . p(l"t ‘Sh Gt—m:t—l)

'p(0t|St7 Tt, thm:tfl)- (D

From these probabilities, we generate triplets
as follows. Given all the past events G¢_.t—1,
we first sample a subject entity s; through
p(St|Gt—m:—1). Then we generate a relation ry
with p(r¢|s¢, Gy—m:—1), and finally the object en-
tity oy is generated by p(o¢|st, ¢, Gt —mut—1).

Next, we introduce how these probabilities are
defined and parameterized in our method.

3 Recurrent Event Network

In this section, we introduce our proposed method,
Recurrent Event Network (RE-NET). RE-NET
consists of a Recurrent Neural Network (RNN) as
arecurrent event encoder (Sec. 3.1) for temporal de-
pendency and a neighborhood aggregator (Sec. 3.2)
for graph structural dependency. We also discuss
parameter learning of RE-NET and define multi-
step inference for distant future by sampling inter-
mediate graphs in a sequential manner (Sec. 3.3).

3.1 Recurrent Event Encoder

To parameterize the probability for each event, RE-
NET introduces a set of global representations as

3We can also first sample an object entity in this process.
Details are omitted for brevity.

well as local representations. The global represen-
tation H; summarizes the global information from
the entire graph until time stamp ¢, which reflects
the global preference on the upcoming events. In
contrast, the local representations focus more on
each subject entity s or each pair of subject entity
and relation (s,r), which capture the knowledge
specifically related to those entities and relations.
We denote the above local representations as hy(s)
and h,(s, r), respectively. The global and local rep-
resentations capture different aspects of knowledge
from the knowledge graph, which are naturally
complementary, allowing us to model the genera-
tive process of the graph in a more effective way.

Based on the above representations, RE-NET
parameterizes p(o¢|s, r, G¢—m.t—1) in the following
way:

p(ot]s, T, Gt—mit—1) X exp ([eS rep: ht_l(s,r)}T -'wo,,) ,
@
where eg, e, € R? are learnable embedding vec-
tors specified for subject entity s and relation r.
hi_1(s,r) € R? is the local representation for (s, r)
obtained at time stamp (¢—1). Intuitively, e5 and e,
can be understood as static embedding vectors for
subject entity s and relation r, whereas h;_; (s, 1)
is dynamically updated at each time stamp. By
concatenating both the static and dynamic repre-
sentations, RE-NET can effectively capture the se-
mantic of (s, 1) up to time stamp (¢ — 1). Based on
that, we further compute the probability of differ-
ent object entities o; by passing the encoding into
our multi-layer perceptron (MLP) decoder. We de-
fine the MLP decoder as a linear softmax classifier
parameterized by {w,, }.

Similarly, we define probabilities for relations
and subjects as follows:

plrels, Geomeemn) o< exp ([es hea(8)]T -,),)

P(8¢]Ge—mit—1) o exp (HL w) ,)

where h;_1(s) focuses on the local information
about s in the past, and H;_; € R? is a vector
representation to encode global graph structures
Gt—1:t—m. To predict what relations a subject en-
tity will interact with p(r¢|s, Gi—m:—1), we treat
the static representation eg as well as the dynamic
representation h;_1(s) as features, and feed them
into a multi-layer perceptron (MLP) decoder pa-
rameterized by w;,. Besides, to predict the dis-
tribution of subject entities at time stamp ¢ (i.e.,
p(s¢|Gi—m:t—1)), we treat the global representation

6671

H,_; as afeature, as it summarizes the global in-
formation from all the past graphs until time stamp
t — 1, which reflects the global preference on the
upcoming events at time stamp ¢.

The global representation H is expected to pre-
serve the global information about all the graphs up
to time stamp ¢. The local representations h(s, r)
and h;(s) emphasize more on the local events re-
lated to each entity and relation. Thus we define
them as follows:

H, =RNN'(g(G:),H; 1), 5)
hi(s,r) = RNN*(g(NI*)), H, he1(s,1)), (6)
hi(s) = RNN®(g(N{”), Hy, hi—1(s)),)

where ¢ is an aggregate function which will be
discussed in Section 3.2 and NES) stands for all
the events related to s at the current time step ¢.
We leverage a recurrent model RNN (Cho et al.,
2014) to update them. The global representation
takes the global graph structure g(G;) as an input.
g(Gy) is an aggregation over all the events G at
time t. We define ¢(G;) = max({g(N{*)},), which
is an element-wise max-pooling operation over all
g(N®). The g(NES)) captures the local graph struc-
ture for subject entity s. The local representations
are different from the global representations in two
ways. First, the local representations focus more on
each entity and relation, and hence we aggregate
information from events Ngs) that are related to the
entity. Second, to allow RE-NET to better charac-
terize the relationships between different entities,
we treat the global representation H; as an extra
feature in the definition, which acts as a bridge to
connect different entities.

In the next section, we introduce how we design
g in RE-NET.

3.2 Neighborhood Aggregators

In this section, we first introduce two simple aggre-
gation functions: a mean pooling aggregator and
an attentive pooling aggregator. These two simple
aggregators only collect neighboring entities under
the same relation r. Then we introduce a more
powerful aggregation function: a multi-relational
aggregator. We depict comparison on aggregators
in Fig. 3.

Mean Pooling Aggregator. The baseline aggrega-
tor simply takes the element-wise mean of repre-
sentations in {e, : 0 € N}, where N is the set
of objects that interacted with s under r at ¢. But
the mean aggregator treats all neighboring objects

T n TZ—YSD

—-—>
1-hop aggregator 2-hop aggregator
i Y
)
O+
0]
Mean Pooling Attentive Pooling RGCN Pooling

Figure 3: Comparison of neighborhood aggregators.
The blue node corresponds to node s, red nodes are 1-
hop neighbors, and green nodes are 2-hop neighbors.
Different colored edges are different relations. Mean
and attentive pooling aggregators do not differentiate
different relations and do not encode 2-hop neighbors,
whereas RGCN aggregator can incorporate information
from multi-relational and multi-hop neighbors.

equally, and thus ignores the different importance
of each neighbor entity.

Attentive Pooling Aggregator. We define an at-
tentive aggregator based on the additive attention
introduced in (Bahdanau et al., 2015) to distin-
guish the important entities for (s, r). The aggre-
gate function is defined as g(N{*") = >, ente) Co€o,
where o, = softmax(v ' tanh(W (eg; er;€,))). v € R?
and W € R**3¢ are trainable weight matrices. By
adding the attention function of the subject and the
relation, the weight can determine how relevant
each object entity is to the subject and the relation.

Multi-Relational Graph (RGCN) Aggregator.
We introduce a multi-relational graph aggregator
from (Schlichtkrull et al., 2018). This is a general
aggregator that can incorporate information from
multi-relational and multi-hop neighbors. Formally,
the aggregator is defined as follows:

. 1
) =B <o (5 5w ewn).

S
PR N

(®)
where initial hidden representations for each node
(h((,o)) are set to trainable embedding vectors (e,)
for each node and c; is a normalizing factor. Details
are described in Section B of appendix.

3.3 Parameter Learning and Inference

In this section, we discuss how RE-NET is trained
and infers events over multiple time stamps.

Parameter Learning via Event Predictions. An
object entity prediction given (s, r) can be viewed
as a multi-class classification task, where each class
corresponds to each object entity. Similarly, rela-
tion prediction given s and subject entity prediction

6672

Algorithm 1: Learning algorithm of RE-NET

Input: Observed graph sequence: {G1, ..., G},
Number of events to sample at each step: M.
Output: An estimation of the conditional distribution
P(Gryat|Gu).
1t «—t+1
while t’ < t 4+ At do
3 Sample M number of s ~ p(s\@t_,_l:tr_l, G.t)
by equation (4).
4 Pick top-k triples
{(s1,11,01,t), ..., (8K, Tk, Ok, t') } ranked by
p(s,r,0|Gir1.47—1, Git).
5 étl <—{(sl,r1,01,t'),...,(sk7rk,0k7t’)}
6 vt +1
7 Estimate the probability of each event
p(S7 r, 0|GAt+1:t+At717 G:t)-
8 Estimate the joint distribution of all events
p(Giiat|Giirirar_1, Gt) by equation (1).
return p(Gt+At|Gt+1;t+At,1, G'.¢) as an estimation.

N

e

can be considered as a multi-class classification
task. Here we omit the notations for preceding
events for brevity. Thus, the loss function is as
follows:

c-- %

(s,r,0,t)EG
€]
where G is set of events, and \; and Ay are im-
portance parameters that control the importance of
each loss term. A1 and A5 can be chosen depending
on the task. If a task aims to predict o given (s,),
then we can give small values to Ay and s.

Multi-step Inference over Time. RE-NET seeks
to predict the forthcoming events based on the pre-
vious observations. Suppose that the current time is
t and we aim to predict events at time ¢ + At where
At > 0. Then the problem of multi-step infer-
ence can be formalized as inferring the conditional
probability p(Gi+a:|G.+). The problem is nontrivial
as we need to integrate over all Gy41.4+A¢—1. To
achieve efficient inference, we draw a sample of
Gty1:4+At—1, and estimate the conditional proba-
bility as follows:

P(Giat|Git)

- ¥

Git1it+at—1

- ¥

Gittit+at—1

p(Gt+At, Gt+1:t+At71|G:t)
p(Gt+At‘G:t+At—1) s 'p(Gt+1 ‘G:t)

=]EGt+1:t+At—l |Gt [p(Gt+At|Gii+Ai—1)]

~ p(Gt+At|Gt+1:t+At71, Git).

Intuitively, one starts with computing
p(Gi41]G.t), and drawing a sample G 1 from the

log p(o¢|se, re)+ A1 log p(re|se)+A2 log p(se),

conditional distribution. With this sample, one can
further compute p(Gii2|Gii1,Go). By iteratively
computing the conditional distribution for Gy
and drawing a sample from it, one can eventually
estimate p(Giyad|G.e) as p(Gryar|Gesrirar—1,Gr).
Although we can improve the estimation by
drawing multiple graph samples at each step,
RE-NET already performs very well with a single
sample, and thus we only draw one sample graph
at each step for better efficiency. Based on the
estimation of the conditional distribution, we can
further predict events that are likely to form in
the future. We summarize the detailed inference
algorithm in Algorithm 1; we first sample M
number of s (line 3) and pick top-k triples (line 4).
Then we build a graph at time ¢’ (line 5) to generate
a graph. The time complexity of the algorithm is
described in Section C of appendix.

4 Experiments

Evaluating the quality of generated graphs is non-
trivial, especially for knowledge graphs (Theis
et al., 2015). In our experiments, we evaluate the
proposed method on a extrapolation link prediction
task on TKGs. The task of predicting future links
aims to predict unseen relationships with object
entities given (s,r,?,t) (or subject entities given
(?7,1r,0,t)) at future time ¢, based on the past ob-
served events in the TKG. Essentially, the task is
a ranking problem over all the events (s, r, 7, t) (or
(?7,1,0,t)). RE-NET can approach this problem by
computing the probability of each event in a distant
future with the inference algorithm in Algorithm 1,
and further rank all the events according to their
probabilities. Note that we are only given a training
set as ground truth at inference and we do not use
any ground truth in the test set for the next time
step predictions when performing multi-step infer-
ence. This is the main difference from previous
work; they use previous ground truth in the test set.

We evaluate our proposed method on three
benchmark tasks: (1) predicting future events on
three event-based datasets; (2) predicting future
facts on two knowledge graphs which include facts
with time spans, and (3) studying ablation of our
proposed method. Section 4.1 summarizes the
datasets. In all these experiments, we perform
predictions on time stamps that are not observed
during training.

6673

Table 1: Performance comparison on temporal link prediction (average metrics in % over 5 runs) on three event-
based TKG datasets (ICEWS18, GDELT, and ICEWS14) and two public knowledge graphs (WIKI and YAGO).

RE-NET achieves the best results.

ICEWS18 GDELT ICEWS14 WIKI YAGO
Method
MRR H@3 H@I10 | MRR H@3 H@I10 | MRR H@3 H@10 | MRR H@3 H@I0 | MRR H@3 H®@I10
DistMult 22.16 26.00 42.18 | 18.71 20.05 32.55 | 19.06 22.00 36.41 |46.12 49.81 51.38 |59.47 6091 6526
2 R-GCN 23.19 2534 3648 | 2331 2494 3436 | 2631 3043 4534 | 3757 39.66 4190 | 4130 4444 52.68
% ConvE 36.85 39.92 50.54 | 3556 39.45 49.16 | 4046 43.33 5475 | 47.55 49.78 4942 | 62.66 63.36 65.57
RotatE 23.10 27.61 38.72 | 2233 23.89 3229 | 29.56 3292 42.68 |48.67 49.74 49.88 | 64.09 64.67 66.16
TA-DistMult 28.53 31.57 4496 | 2935 31.56 41.39 |20.78 22.80 3526 |48.09 49.51 51.70 | 61.72 63.32 65.19
HyTE 731 750 1495 | 637 672 18.63 | 11.48 13.04 2251 | 43.02 45.12 4949 |23.16 4574 5194
dyngraph2vecAE .52 1.99 202 | 453 1.87 1.87 | 10.83 12.70 15.02 | 530 527 5.45 093 0.84 0.95
tNodeEmbed 832 974 1747 | 1997 22.62 3272 | 17.84 20.16 32.88 | 9.54 1044 16.60 | 422 4.16 8.4
= EvolveRGCN 16.59 1832 34.01 | 1555 19.23 31.54 | 17.01 1897 32.58 | 4649 47.83 49.23 | 59.74 61.03 61.69
‘g Know-Evolve* 327 323 3.26 243 235 241 142 137 143 0.09 00.03 0.10 | 00.07 0 0.04
E Know-Evolve+MLP 929 9.62 17.18 | 22.78 2549 3541 |22.89 26.68 3857 | 12.64 1433 2157 | 6.19 659 1148
= DyRep+MLP 9.86 10.66 18.66 | 23.94 27.88 36.58 |24.61 28.87 39.34 | 11.60 12.74 21.65 | 587 654 11.98
R-GCRN+MLP 35.12 3826 5049 | 3729 41.08 51.88 | 36.77 40.15 5233 |47.71 48.14 49.66 | 53.89 56.06 61.19
RE-NET w. mean agg. | 40.70 43.27 53.65 | 38.35 42.13 52.52 | 4379 47.34 5747 |51.13 5137 53.01 | 6510 6524 67.34
RE-NET w. attn agg. 40.96 44.08 54.32 | 3854 4225 5285 |43.94 4785 5791 |51.25 5254 53.12 | 65.13 6554 67.87
RE-NET 4293 4547 55.80 | 40.42 4340 53.70 | 45.71 49.06 59.12 | 51.97 52.07 5391 | 65.16 65.63 68.08
RE-Net —— ConvE TA-DistMult

4.1 Experimental Setup

We compare the performance of our model against
various traditional models for knowledge graphs,
as well as some recent temporal reasoning models
on five public datasets.

Datasets. We use five TKG datasets in
our experiments: 1) three event-based
TKGs: ICEWS18 (Boschee et al., 2015),

ICEWS14 (Trivedi et al., 2017), and GDELT (Lee-
taru and Schrodt, 2013); and 2) two knowledge
graphs where temporally associated facts have
meta-facts as (s,r,o0,[ts,te]) where t5 is the
starting time point and t. is the ending time
point: WIKI (Leblay and Chekol, 2018) and
YAGO (Mahdisoltani et al., 2014).

Evaluation Setting and Metrics. For each dataset
except ICEWS14* we split it into three sub-
sets, i.e., train(80%)/valid(10%)/test(10%), by time
stamps. Thus, (time stamps of train) < (time
stamps of valid) < (time stamps of test). We report
a filtered version of Mean Reciprocal Ranks (MRR)
and Hits@3/10. Similar to the definition of filtered
setting in (Bordes et al., 2013), during evaluation,
we remove all the valid triplets that appear in the
train, valid, or test sets from the list of corrupted
triplets.

Baselines. We compare our approach to baselines
for static graphs and temporal graphs as follows:

(1) Static Methods. By ignoring the edge time
stamps, we construct a static, cumulative graph for
all the training events, and apply multi-relational

*We used the splits as provided in (Trivedi et al., 2017).

05
© .

04
Soa ©
z b=
03 A\/\\U\//\ 03

0.2
15 20 25 30 0
Days

(a) ICEWSI18

0 5 10 1000 2000 3000 4000 5000

Minutes

(b) GDELT

Figure 4: Performance of temporal link prediction
over future timestamps with filtered Hits@3. RE-
NET consistently outperforms the baselines.

graph representation learning methods including
DistMult (Yang et al., 2015), R-GCN (Schlichtkrull
et al., 2018), ConvE (Dettmers et al., 2018), and
RotatE (Sun et al., 2019).

(2) Temporal Reasoning Methods.
compare state-of-the-art temporal reasoning
methods for knowledge graphs, including
Know-Evolve® (Trivedi et al., 2017), TA-
DistMult (Garcia-Duran et al.,, 2018), and
HyTE (Dasgupta et al., 2018). TA-DistMult and
HyTE are for an interpolation task whereas we
focus on an extrapolation task. To do this, we
assign random values to temporal embeddings
that are not observed during training. To see the
effectiveness of our recurrent event encoder, we
use encoders of previous work and our MLP
decoder as baselines; we compare Know-Evolve,
Dyrep (Trivedi et al., 2019), and GCRN (Seo

We also

3#: We found a problematic formulation in Know-Evolve.
Details of this issues are discussed in Section G of appendix.

6674

50 45

Mean ===

Attn 44
45 RGCN T
43
40
42

35 41

30 40

(a) RE-NET with dif-
ferent aggregators

(b) Study of empirical
p(s) and p(s, r)

Figure 5: Performance study on model variations.
We study the effects of (a) RE-NET with different ag-
gregators, and (b) empirical p(s) and p(s,).

et al., 2017) combined with our MLP decoder,
called Know-Evolve+MLP, DyRep+MLP, and
R-GCRN+MLP. The GCRN utilizes Graph
Gonvolutional Network (Kipf and Welling, 2016).
Instead, we use RGCN (Schlichtkrull et al., 2018)
to deal with multi-relational graphs.

We also compare our method with dy-
namic methods on homogeneous graphs: dyn-
graph2vecAE (Goyal et al., 2019), tNodeEm-
bed (Singer et al., 2019), and EvolveRGCN (Pareja
et al., 2020). These methods were proposed to pre-
dict interactions at future time on homogeneous
graphs. Thus, we modified the methods to apply
them on multi-relational graph.

(3) Variants of RE-NET. To evaluate the impor-
tance of different components of RE-NET, we var-
ied our model in different ways: RE-NET w/o
multi-step which does not update history during
inference, RE-NET without the aggregator (RE-
NET w/o agg.), RE-NET with a mean aggregator
(RE-NET w. mean agg.), and RE-NET with an
attentive aggregator (RE-NET w. attn agg.). RE-
NET w/o agg. takes a zero vector instead of an
aggregator. RE-NET w. GT denotes RE-NET with
ground truth history.

Please refer to Section D of appendix for detailed
experimental settings.

4.2 Performance Comparison on TKGs.

We compare our proposed method with other base-
lines. The test results are obtained by averaged
metrics (5 runs) over the entire test sets on datasets.

Results on Event-based TKGs. Table 1 summa-
rizes results on all datasets. Our proposed RE-NET
outperforms all other baselines on ICEWS18 and
GDELT. Static methods underperform compared
to our method since they do not consider temporal
factors. Also, RE-NET outperforms all other tem-

poral methods including TA-DistMult, HyTE, and
dynamic methods on homogeneous graphs. Know-
Evovle+MLP significantly improves Know-Evolve,
which shows effectiveness of our MLP decoder.
However, there is still a large gap from our model,
which also indicates effectiveness of our recurrent
event encoder. R-GCRN+MLP has a similar struc-
ture to ours in that it has a recurrent encoder and an
RGCN aggregator but it lacks multi-step inference,
global information, and the sophisticated modeling
for the recurrent encoder. Thus, it underperforms
compared to our method. More importantly, none
of the prior temporal methods are capable of multi-
step inference, while RE-NET can sequentially in-
fer multi-step events (Details in Section 4.3).

Results on Public KGs. Previous results have
demonstrated the effectiveness of RE-NET on
event-based KGs. In Table 1 we compare RE-
NET with other baselines on the Public KGs WIKI
and YAGO. Our proposed RE-NET outperforms all
other baselines on these datasets. In these datasets,
baselines show better results than in the event-
based TKGs. This is due to the characteristics
of the datasets; they have facts that are valid within
a time span. However, our proposed method consis-
tently outperforms the static and temporal methods,
which implies that RE-NET effectively infers new
events using a powerful event encoder and an ag-
gregator, and provides accurate prediction results.

Performance of Prediction over Time. Next, we
further study performance of RE-NET over time.
Figs. 4 shows the performance comparisons over
different time stamps on the ICEWS18, GDELT,
WIKI, and YAGO datasets with filtered Hits@3
metrics. RE-NET consistently outperforms base-
line methods for all different time stamps. Per-
formance of each method fluctuate since testing
entities are different at each time step. We notice
that with increasing time steps, the difference be-
tween RE-NET and ConvE gets smaller as shown
in Fig. 4. This is expected since further future
events are harder to predict. To estimate the joint
probability distribution of events in a distant future,
RE-NET needs to generate a long graph sequence.
The quality of generated graphs deteriorates when
RE-NET generates a long graph sequence.

4.3 Ablation Study

In this section, we study the effect of variations in
RE-NET on the ICEWS18 dataset. We present the
results in Tables 1, 2, and Fig. 5.

6675

Table 2: Ablation study on the ICEWS18 and
GDELT datasets.

ICEWS18 GDELT
| MRR H@3 H@I0 | MRR He@3 Hel0

33.46 3598 46.62 | 38.10 4126 51.61
40.05 42.60 5292 | 38.72 4252 5278
4293 4547 55.80 | 40.42 4340 53.70

| 4433 4683 5727 | 41.80 4571 56.03

Method

RE-NET w/o agg.
RE-NET w/o multi-step
RE-NET

RE-NET w. GT

Different Aggregators. In Table 2, we observe
that RE-NET w/o agg. hurts model quality, suggest-
ing that introducing aggregators makes the model
capable of dealing with concurrent events and im-
proves performance. Table 1 and Fig. 5a show the
performance of RE-NET with different aggrega-
tors. Among them, RGCN aggregator outperforms
other aggregators. This aggregator has the advan-
tage of exploring multi-relational neighbors. Also,
RE-NET with an attentive aggregator shows better
performance than RE-NET with a mean aggrega-
tor, which implies that giving different attention
weights to each neighbor helps predictions.

Multi-step Inference. In Table 2, we observe
that RE-NET outperforms RE-NET w/o multi-step.
The latter one does not update history during in-
ference; keeps its last history in the training set.
So it is not affected by time stamps. Without the
multi-step inference, the performance of RE-NET
is decreased as is shown. Also we expect that RE-
NET w. GT shows significant improvement when
RE-NET uses ground truth of triples at the previous
time step which are not allowed in our setup.

Empirical Probabilities. Here, we study the
role of p(st|Gt_m;t_1) and p(rt|s, Gt—m:t—l)-
We denote them as p(s) and p(r) for brevity.
p(st, 1¢|Gi—m:t—1) (or simply p(s,r)) is equivalent
to p(s)p(r). In Fig 5b, emp. p(s) (or pe(s)) denotes
a model with empirical p(s), defined as p.(s) =
(# of s-related triples) / (total # of triples). emp.
p(s,r) (or pe(s,r)) denotes a model with pe(s) and
pe(r),defined as p.(r) = (# of r-related triples) /
(total # of triples). Thus, pe(s,r) = pe(s)pe(r).
Note that RE-NET use a trained p(s) and p(r). The
results show that the trained p(s) and p(r) help RE-
NET for multi-step predictions. p.(s) underper-
forms RE-NET, and p¢(s,r) = pe(s)pe(r) shows
the worst performance, suggesting that training
each part of the probability in equation (1) im-
proves performance.

5 Related Work

Temporal KG Reasoning. There have been some
recent attempts on incorporating temporal infor-
mation in modeling dynamic knowledge graphs,
broadly categorized into two settings - extrapola-
tion (Trivedi et al., 2017) and interpolation (Garcia-
Durédn et al., 2018; Leblay and Chekol, 2018;
Dasgupta et al., 2018; Goel et al., 2020; Lacroix
et al., 2020). For the former setting, Know-
Evolve (Trivedi et al., 2017) models the occurrence
of a fact as a temporal point process. For the lat-
ter setting, several embedding-based methods have
been proposed (Garcia-Durén et al., 2018; Leblay
and Chekol, 2018; Dasgupta et al., 2018; Goel et al.,
2020; Lacroix et al., 2020) to model time informa-
tion. They embed the associate into a low dimen-
sional space such as relation embeddings with RNN
on the text of time (Garcia-Duran et al., 2018), time
embeddings (Leblay and Chekol, 2018), temporal
hyperplanes (Leblay and Chekol, 2018), diachronic
entity embedding (Goel et al., 2020), and tensor de-
composition (Lacroix et al., 2020). However, these
models cannot predict future events, as representa-
tions of unseen time stamps are unavailable.

Temporal Modeling on Homogeneous Graphs.
There are attempts on predicting future links on
homogeneous graphs (Pareja et al., 2020; Goyal
et al., 2018, 2019; Zhou et al., 2018; Singer et al.,
2019). Some of the methods try to incorporate and
learn graphical structures to predict future links
(Pareja et al., 2020; Zhou et al., 2018; Singer et al.,
2019), while other methods predict by reconstruct-
ing an adjacency matrix by using an autoencoder
(Goyal et al., 2018, 2019). These methods seek
to predict on single-relational graphs, and are de-
signed to predict future edges in one future step
(i.e., for t + 1). However, our work focuses on
multi-relational knowledge graphs and aims for
multi-step prediction.

Deep Autoregressive Models. Deep autoregres-
sive models define joint probability distributions
as a product of conditionals. DeepGMG (Li et al.,
2018) and GraphRNN (You et al., 2018) are deep
generative models of graphs and focus on generat-
ing static homogeneous graphs where there is only
a single type of edge. In contrast to these stud-
ies, our work focuses on generating heterogeneous
graphs, in which multiple types of edges exist, and
thus our problem is more challenging. To the best
of our knowledge, this is the first paper to formu-

6676

late the structure inference (prediction) problem for
temporal, multi-relational (knowledge) graphs in
an autoregressive fashion.

6 Conclusion

To tackle the extrapolation problem, we proposed
Recurrent Event Network (RE-NET) to model tem-
poral, multi-relational, and concurrent interactions
between entities. RE-NET defines the joint proba-
bility of all events, and thus is capable of inferring
graphs in a sequential manner. The experiment re-
vealed that RE-NET outperforms all the static and
temporal methods and our extensive analysis shows
its strength. Interesting future work includes devel-
oping a fast and efficient version of RE-NET, and
modeling lasting events and performing inference
on the long-lasting graph structures.

Acknowledgement

This research is based upon work supported in part
by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via Contract No. 2019-
19051600007, the DARPA MCS program under
Contract No. N660011924033 with the United
States Office Of Naval Research, the Defense
Advanced Research Projects Agency with award
WO11INF-19-20271, and NSF SMA 18-29268. The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the
U.S. Government. We would like to thank all the
collaborators in USC INK research lab for their
constructive feedback on the work.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. = CoRR,
abs/1409.0473.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Elizabeth Boschee, Jennifer Lautenschlager, Sean
O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. Icews coded event data. Harvard Data-
verse, 12.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
EMNLP.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In AAAIL

Alberto Garcia-Duran, Sebastijan Dumancic, and
Mathias Niepert. 2018. Learning sequence en-
coders for temporal knowledge graph completion.
In EMNLP.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding
for temporal knowledge graph completion. In
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes
Canedo. 2019. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learn-
ing. Knowledge-Based Systems, page 104816.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu.
2018. Dyngem: Deep embedding method for dy-
namic graphs. arXiv preprint arXiv:1805.11273.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan
Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal
Poupart. 2019. Relational representation learning
for dynamic (knowledge) graphs: A survey. arXiv
preprint arXiv:1905.11485.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N. Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. CoRR, abs/1609.02907.

Gizem Korkmaz, Jose Cadena, Chris J Kuhlman, Achla
Marathe, Anil Vullikanti, and Naren Ramakrishnan.
2015. Combining heterogeneous data sources for
civil unrest forecasting. In Proceedings of the 2015
IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2015, pages
258-265.

Timothée Lacroix, Guillaume Obozinski, and Nicolas
Usunier. 2020. Tensor decompositions for temporal
knowledge base completion. In International Con-
ference on Learning Representations.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In Com-
panion of the The Web Conference 2018 on The Web
Conference 2018, pages 1771-1776. International
World Wide Web Conferences Steering Committee.

6677

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979—

2012. In ISA annual convention, volume 2, pages
1-49. Citeseer.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu,
and Peter Battaglia. 2018. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324.

Farzaneh Mahdisoltani, Joanna Asia Biega, and
Fabian M. Suchanek. 2014. Yago3: A knowledge
base from multilingual wikipedias. In CIDR.

Fred Morstatter, Aram Galstyan, Gleb Satyukov,
Daniel Benjamin, Andres Abeliuk, Mehrnoosh Mir-
taheri, KSM Tozammel Hossain, Pedro Szekely,
Emilio Ferrara, Akira Matsui, Mark Steyvers,
Stephen Bennet, David Budescu, Mark Himmel-
stein, Michael Ward, Andreas Beger, Michele
Catasta, Rok Sosic, Jure Leskovec, Pavel Atanasov,
Regina Joseph, Rajiv Sethi, and Ali Abbas. 2019.
Sage: A hybrid geopolitical event forecasting sys-
tem. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-19. International Joint Conferences on Artifi-
cial Intelligence Organization.

Sathappan Muthiah, Bert Huang, Jaime Arredondo,
David Mares, Lise Getoor, Graham Katz, and Naren
Ramakrishnan. 2015. Planned protest modeling in
news and social media. In AAAIL

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei
Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim
Kaler, Tao B. Schardl, and Charles E. Leiserson.
2020. EvolveGCN: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence.

Lawrence Phillips, Chase Dowling, Kyle Shaffer,
Nathan Oken Hodas, and Svitlana Volkova. 2017.
Using social media to predict the future: A system-
atic literature review. ArXiv, abs/1706.06134.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In ESWC.

Youngjoo Seo, Michaél Defferrard, Pierre Van-
dergheynst, and Xavier Bresson. 2017. Structured
sequence modeling with graph convolutional recur-
rent networks. In ICONIP.

Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node
embedding over temporal graphs. arXiv preprint
arXiv:1903.08889.

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. arXiv
preprint arXiv:1902.10197.

Lucas Theis, Adron van den Oord, and Matthias
Bethge. 2015. A note on the evaluation of genera-
tive models. arXiv preprint arXiv:1511.01844.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep temporal rea-
soning for dynamic knowledge graphs. In ICML.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet
Biswal, and Hongyuan Zha. 2019. Dyrep: Learn-
ing representations over dynamic graphs. In ICLR
2019.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. CoRR, abs/1412.6575.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamil-
ton, and Jure Leskovec. 2018. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive mod-
els. In International Conference on Machine Learn-
ing, pages 5694-5703.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yuet-
ing Zhuang. 2018. Dynamic network embedding by
modeling triadic closure process. In Thirty-Second
AAAI Conference on Artificial Intelligence.

6678

A Recurrent Neural Network

We define a recurrent event encoder based on RNN
as follows:

ht(S, I‘) = RI\IN(g(I\Iz(S))7 Ht, htfl(s, I‘))

We use Gated Recurrent Units (Cho et al., 2014)
as RNN:

a; = [es: er: g(N¢(s)) : Hy]
zi=0(W.a; +U.h; 1)
Ty = O'(Wrat + U'rht—l)

hy=(1—2z¢)ohi_1 + zotanh(Wyrat + Up(ry o hi_1)),

where : is concatenation, o (-) is an activation func-
tion, and o is a Hadamard operator. The input
is a concatenation of four vectors: subject em-
bedding, object embedding, aggregation of neigh-
borhood representations, and global information
vector (eg, ey, g(N¢(s)), Hy). hy(s) and Hy are
similarly defined. For h(s), a concatenation
of subject embedding, aggregation of neighbor-
hood representations, and global information vec-
tor (es, g(N¢(s)), H,) is input. For H, aggrega-
tion of the whole graph representations g(G}) is
input.

B Details of RGCN Aggregator
The RGCN aggregator is defined as follows:

s 1
oND) =0 =0 (33 SwORDsw RO,

3 r CS
rGRoeNgs,x)

10)
where initial hidden representations for each node
(hS,O)) are set to trainable embedding vectors (e,)
for each node and c; is a normalizing factor. De-
tailed

Basically, each relation can derive a local graph
structure between entities, which further yield a
message on each entity by aggregating informa-
tion from neighbors, i.e., ZoeNES*” }SWSZ)hE,”. The
overall message on each entity is further computed
by aggregating all the relation-specific messages,
ie, Y cx ZoeN,(f’r) iW@th). Finally, the aggrega-
tor g(N'¥) is defined by combining both the over-
all message and information from past steps, i.e.,
wnd.

To distinguish weights between different re-
lations, we adopt independent weight matrices
{WEZ)} for each relation r. Furthermore, the aggre-
gator collects representations of multi-hop neigh-
bors by introducing multiple layers of the neural

network with each layer indexed by /. The num-
ber of layers determines the depth to which the
node reaches to aggregate information from its lo-
cal neighborhood.

The major issue of this aggregator is that the
number of parameters grows rapidly with the
number of relations. In practice, this can eas-
ily lead to overfitting on rare relations and mod-
els of very large size. Thus, we adopt the
block-diagonal decomposition (Schlichtkrull et al.,
2018), where each relation-specific weight ma-
trix is decomposed into a block-diagonal by de-
composing into low-dimensional matrices. Wg)
in equation (10) is defined as a block diag-
onal matrix, diag(A&Q, ces Ag)r) where A) ¢
R /B)x@V/B) and B is the number of basis
matrices. The block decomposition reduces the
number of parameters and helps prevent overfit-
ting.

C Computational Complexity Analysis.

We analyze the time complexity of the graph gen-
eration process in Algorithm 1. Computing p(s|
Gt—m:—1) (equation (4)) takes O(|E|Lm), where
|E| is the maximum number of triples among
{Gi—m,...,Gi—1}, L is the number of layers of
aggregation, and m is the number of the past time
steps since we unroll m time steps in RNN. From
this probability, we sample M number of subjects
s. Computing p(s¢, 14, 0¢|Gi—m:—1) in equation
(1) takes O(D¥m), where D is the maximum de-
gree of entities. To get probabilities of all pos-
sible triples given sampled subjects, it requires
O(M|R||O|D*m) where |R| is the total number
of relations and |O| is the total number of entities.
Thus, the time complexity for generating one graph
is O(|E|Lm + M|R||O|(D*m + log k)) where k
is the cutoff number for picking top-k triples. The
time complexity is linear to the number of entities
and relations, and the number of sampled s.

D Detailed Experimental Settings

Datasets. We use five datasets: 1) three event-
based temporal knowledge graphs and 2) two
knowledge graphs where temporally associated
facts have meta-facts as (s, r, o, [ts,t.]) where ¢4
is the starting time point and ¢, is the ending time
point. The first group of graphs includes Integrated
Crisis Early Warning System ICEWS18 (Boschee
et al., 2015) and ICEWS14 (Trivedi et al., 2017)),
and Global Database of Events, Language, and

6679

Table 3: Dataset Statistics.

Data Nirain Nyatid Niest Nent Nyep Time gap
GDELT 1,734,399 238,765 305,241 7,691 240 15 mins
ICEWS18 373,018 45,995 49,545 23,033 256 24 hours
ICEWS14 323,895 - 341,409 12,498 260 24 hours
WIKI 539,286 67,538 63,110 12,554 24 1 year
YAGO 161,540 19,523 20,026 10,623 10 1 year

Tone (GDELT) (Leetaru and Schrodt, 2013). The
second group of graphs includes WIKI (Leblay
and Chekol, 2018) and YAGO (Mahdisoltani et al.,
2014). Dataset statistics are described on Table 3,
where Nyrain, Nyatid» and Nyes: are the numbers of
train set, valid set, and test set, respectively. N,
and N,.; are the numbers of entities and relations.
The time gap represents time granularity between
adjacent events.

ICEWSI18 is collected from 1/1/2018 to
10/31/2018, ICEWS14 is from 1/1/2014 to
12/31/2014, and GDELT is from 1/1/2018 to
1/31/2018. The ICEWS14 is from (Trivedi et al.,
2017). We didn’t use their version of the GDELT
dataset since they didn’t release the dataset.

WIKI and YAGO datasets have temporally as-
sociated facts (s,r,o0,[ts,te]). We preprocess
the datasets such that each fact is converted to
{(s,r,0,ts), (s,r,0,ts+ 1), ..., (8,1,0, te) } Where
1, is a unit time to ensure each fact has a sequence
of events. Noisy events of early years are removed
(before 1786 for WIKI and 1830 for YAGO).

The difference between the first group and the
second group is that facts happen multiple times
(even periodically) on the first group (event-based
knowledge graphs) while facts last long time but
are not likely to occur multiple times in the second
group.

Model details of RE-NET. We use Gated Re-
current Units (Cho et al., 2014) as our recurrent
event encoder, where the length of history is set
as m = 10 which means saving past 10 event se-
quences. If the events related to s are sparse, we
check the previous time steps until we get m pre-
vious time steps related to the entity s. We pre-
train the parameters related to equations 4 and 5
due to the large size of training graphs. We use a
multi-relational aggregator to compute H ;. The ag-
gregator provides hidden representations for each
node and we max-pool over all hidden represen-
tations to get H,;. We apply teacher forcing for
model training over historical data, i.e., we use the
ground truth rather than the model’s own prediction

as the input of the next time step during training.
At inference time, RE-NET performs multi-step
prediction across the time stamps in dev and test
sets. In each time step, we sample 1000 (= M)
number of subjects and save top-1000 (= k) triples
to use them as a generated graph . We set the size
of entity/relation embeddings to be 200 and em-
bedding of unobserved embeddings are randomly
initialized. We use two-layer RGCN in the RGCN
aggregator with block dimension 2 x 2. The model
is trained by the Adam optimizer (Kingma and Ba,
2014). We set A1 to 0.1, the learning rate to 0.001
and the weight decay rate to 0.00001. All experi-
ments were done on GeForce GTX 1080 Ti.

Experimental Settings for Baseline Methods. In
this section, we provide detailed settings for base-
lines. We use implementations of DistMult®. We
implemented TA-DistMult based on the implemen-
tation of Distmult. For TA-DistMult, We use tem-
poral tokens with the vocabulary of year, month and
day on the ICEWS dataset and the vocabulary of
year, month, day, hour and minute on the GDELT
dataset. We use use a binary cross-entropy loss for
DistMult and TA-DistMult. We validate the em-
bedding size among 100 and 200. We set the batch
size to 1024, margin to 1.0, negative sampling ratio
to 1, and use the Adam optimizer.

We use the implementation of HyTE’. We use
every timestamp as a hyperplane. The embedding
size is set to 128, the negative sampling ratio to 5,
and margin to 1.0. We use time agnostic negative
sampling (TANS) for entity prediction, and the
Adam optimizer.

We use the codes for ConvE® and use imple-
mentation by Deep Graph Library’. Embedding
sizes are 200 for both methods. We use 1 to all
negative sampling for ConvE and use 10 negative
sampling ratio for RGCN, and use the Adam op-
timizer for both methods. We use the codes for

6hllps://gi[hub.com/jimmywangheng/knowledgejeprf:s,entation,pylorch
7 https://github.com/malllabiisc/HyTE

8hltps:// github.com/TimDettmers/ConvE

9

https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgen

6680

Table 4: Performance comparisons with raw metrics. We observe our method outperforms all other methods.

ICEWS18 GDELT ICEWS14 WIKI YAGO
Method
MRR H@3 H@10 | MRR H@3 H@I10 | MRR H@3 H@I0 | MRR H@3 H@I10 | MRR H@3 H@l10
DistMult 1386 1522 3126 | 861 827 17.04 | 972 1009 2253 | 27.96 3245 3951 | 4405 4970 59.94
2 RGCN 1505 1649 2900 | 1217 1237 2063 | 1503 16.12 3147 | 1396 1575 22.05 | 2743 3124 4475
E ConvE 2256 2541 41.67 | 1843 1957 3225 |21.64 23.16 3837 | 2641 3036 3941 |4131 47.10 59.67
RotatE 11.63 1231 2803 | 3.62 226 837 | 979 937 2224 | 2608 31.63 3851 | 42.08 4677 59.39
TA-DistMult 1562 17.09 3221 | 1034 1044 21.63 | 1129 1160 2371 | 2644 3136 3897 | 4498 50.64 6111
HyTE 741 733 1601 | 669 757 1906 | 772 7.94 20.16 | 2540 29.16 3754 | 1442 3973 46.98
dyngraph2vecAE 136 154 161 | 453 187 187 | 695 817 1218 | 267 275 3.00 | 081 074 076
{NodeEmbed 721 7.64 1575 | 1297 1261 2122 | 1336 13.13 2431 | 886 1011 1636 | 3.82 3.88 8.07
S EvolveRGCN 1031 1052 23.65 | 654 564 1522 | 832 7.64 1881 |27.19 3135 3813 |40.50 4578 5529
S Know-Evolve* 0.11 000 047 | 011 002 010 | 005 000 010 | 003 0 004 | 002 0 00l
5 Know-EvolvetMLP | 741 787 1476 | 1588 1569 2228 | 1681 1863 2920 | 10.54 1308 2021 | 523 563 1023
DyRep+MLP 782 773 1633 | 1625 1645 2386 | 1754 1987 3034 | 1041 1206 2093 | 498 554 1019
R-GCRN+MLP 2346 2662 4196 | 18.63 19.80 3242 |21.39 23.60 3896 | 28.68 31.44 3858 |4371 4853 56.98
RE-NET w. mean agg. | 2545 2927 4431 | 19.03 2020 33.32 | 2273 2547 4148 | 30.19 3294 4057 | 4633 5249 6121
RE-NET w. attn agg. | 2576 2956 44.86 | 1935 2042 3355 | 2318 2598 4195 | 3025 30.12 40.86 | 4656 52.56 61.35
RE-NET 2662 3027 4557 | 19.60 20.56 33.89 |23.85 14.63 42.58 | 30.87 3355 4127 | 4681 5271 61.93
Know-Evolve!'?. For Know-Evolve, we fix the is- RE-Net ConvE TA-DistMult
sue in their codes. Issues are described in Section G. 058 068
We follow their default settings. 055 \/
: o 0.54 m0.66
We use the code for RotatE'!. The hidden S 1or g \/
layer/embedding size is set to 100, and batch size " 0 * oes
256; other values follow the best values for the 048

larger FB15K dataset configurations supplied by
the author. The author reports filtered metrics only,
so we added the implementation of the raw setting.

Experimental Settings for Dynamic Methods.
We compare our method with dynamic methods
on homogeneous graphs: dyngraph2vecAE (Goyal
et al., 2019), tNodeEmbed (Singer et al., 2019),
and EvolveGCN-O (Pareja et al., 2020). These
methods were proposed to predict interactions at
a future time on homogeneous graphs, while our
proposed method is for predicting interactions on
multi-relational graphs (or knowledge graphs). Fur-
thermore, those methods predict links at one fu-
ture time stamp, whereas our method seeks to pre-
dict interactions at multiple future time stamps.
We modified some methods to apply them on
multi-relational graphs as follows. We adopt R-
GCN (Schlichtkrull et al., 2018) for Evolve GCN-
O and call it EvolveRGCN. We convert knowl-
edge graphs into homogeneous graphs for dyn-
graph2vecAE. The idea of this method is to recon-
struct an adjacency matrix using an auto-encoder
and regard it as a future adjacency matrix. If we
keep relations, relation-specific adjacency matri-
ces will be extremely sparse; the method learns
to reconstruct near-zero adjacency matrices. tN-
odeEmbed is a temporal method on homogeneous

]Ohttps:// github.com/rstriv/Know-Evolve
1 https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

0.62{5 >
S S

D @ 2O N D Ak o W0 o
QO R QE R QX N2 KX X N
L N N A o

Years

(b) YAGO

Years

(a) WIKI

Figure 6: Performance of temporal link prediction
over future timestamps with filtered Hits@3. RE-
NET consistently outperforms the baselines.

graphs. To use this on multi-relational graphs, we
first train entity embeddings with DistMult and set
these as initial embeddings for entities in tNodeEm-
bed. Also we give entity embeddings as input to
LSTM of tNodeEmbed. We concatenate output of
LSTM and relation embeddings to predict objects.
We did not modified other methods since it is not
trivial to extend the methods.

E Additional Experiments

E.1 Results with Raw Metrics

Table 4 shows the performance comparison on
ICEWS18, GDELT, ICEWS14 with raw settings.
Our proposed RE-NET outperforms all other base-
lines.

E.2 Sensitivity Analysis

In this section, we study the parameter sensitivity
of RE-NET including the length of history for the
event encoder, cutoff position k for events to gen-
erate a graph, the number of layers of the RGCN

6681

45 45

44 44
g 43 /’0—0—« g 43 /__—0———«
= 42 4 = 426

41 41

40 40
0 200 400 600 800 1000

(b) Cutoff position k

2 4 6 8 10 12 14

(a) Length of past history

1-layer ===
2-layers
3-layers

w/o global Ezzzzza
global mm—m

(c) # layers of RGCN (d) Effect of global

representations

Figure 7: Parameter sensitivity on RE-NET. We
study the effects of (a) length of RNN history in event
sequence encoder, and (b) cutoff position at inference
time, (c) number of RGCN layers in neighborhood ag-
gregation, and (d) effect of the global representation
from a global graph structure.

aggregator, and effect of the global representation
from a global graph structure. We report the perfor-
mance change of RE-NET on the ICEWS18 dataset
by varying the hyper-parameters (Figs. 7 and 7c).

Length of Past History in Recurrent Event En-
coder. The recurrent event encoder takes the se-
quence of past interactions up to m graph se-
quences or previous histories. Fig. 7a shows the
performance with various lengths of past histories.
When RE-NET uses longer histories, MRR is get-
ting higher. However, the MRR is not likely to go
higher when the length of history is 5 and over.

Cut-off Position & at Inference. To generate a
graph at each time, we cut off top-k triples on rank-
ing results. In Fig. 7b, when k is O, RE-NET does
not generate graphs for estimating p(Gy4+a¢|G:t),
i.e., RE-NET performs single-step predictions, and
it shows the lowest result. When k is larger, the
performance is getting higher and it is saturated af-
ter 500. We notice that the conditional distribution
p(Giyae|G) can be approximated by p(Giyadl
ét+1:t+ At—1, G:¢) by using a larger cutoff position.
Layers of RGCN Aggregator. The number of lay-
ers in the aggregator means the depth to which the
node reaches. Fig. 7c shows the performance ac-
cording to different numbers of layers of RGCN. 2-
layered RGCN improves the performance consider-
ably compared to 1-layered RGCN since 2-layered

RGCN aggregates more information. However,
RE-NET with 3-layered RGCN underperforms RE-
NET with 2-layered RGCN. We conjecture that the
bigger parameter space leads to overfitting.

Global Information. We further observe that rep-
resentations from global graph structures help the
predictions. Fig. 7d shows effectiveness of a rep-
resentation of global graph structures. The im-
provement is marginal, but we consider that global
representations at different time steps give distinct
information beyond local graph structures.

F Case Study

In this section, we study RE-NET’s predictions.
Its predictions depend on interaction histories. We
categorize histories into three cases: (1) consistent
interactions with an object, (2) a specific temporal
pattern, and (3) irrelevant history (Fig. 8). RE-NET
can learn (1) and (2) cases, so it achieves high per-
formances. For the first case, RE-NET can predict
the answer because it consistently interacts with an
object. However, static methods are prone to pre-
dicting different entities which are observed under
relation ”Accuse” in training set. The second case
shows specific temporal patterns on relations: (Ar-
rest, o) — (Use force, o). Without knowing this
pattern, one method might predict “Businessman’
instead of “Men”. RE-NET is able to learn these
temporal patterns so it can predict the second case.
Lastly, the third case shows irrelevant history to the
answer and the history is not helpful to predictions.
RE-NET fails to predict the third case.

>

G Implementation Issues of
Know-Evolve

We found a problematic formulation in the Know-
Evolve model and codes. The intensity function
(equation 3 in (Trivedi et al., 2017)) is defined
as X7 (8) = f(g5" (£)(t —). where g() is a
score function, ¢ is current time, and ¢ is the most
recent time point when either subject or object
entity was involved in an event. This intensity
function is used in inference to rank entity candi-
dates. However, they don’t consider concurrent
event at the same time stamps, and thus ¢ will be-
come t after one event. For example, we have
events e; = (s,7,01,t1),€2 = (8,7,09,t1). After
e1, t will become ¢ (subject s’s most recent time
point), and thus the value of intensity function for
eo will be 0. This is problematic in inference since
if ¢ = t, then the intensity function will always

6682

History (r, o) with same s at different times Query (s, r, ?) Answer
B= :
(Stztement, ==) (visit, B (criticize, B) (Rl Accuse, 2) L=
(Criticize,)
(Aid, Citizen) (Arrest, Businessman) (Use force, Businessman) L 5
(Arrest, Citizen) (Use force, Citizen) (Arrest, Men) (iR, Vs e, 7)) Ren
| || (Accuse, -) B . President of
(Employ weapons, _x &) (Use force, _x) _— (, Invite, ?) A
I |] { Employ weapons, ﬁ) — South Africa
t-3 t—2 t—1 t

Figure 8: Case study of RE-NET’s predictions. RE-NET’s predictions depend on interaction histories. Interac-
tion histories are categorized into three cases: (1) consistent interactions with an object, (2) a specific temporal
pattern, and (3) irrelevant history. RE-NET achieves good performances on the first two cases, and poor perfor-
mances on the third case.

be 0 regardless of entity candidates. In inference,
all object candidates are ranked by the intensity
function. But all intensity scores for all candidates
will be 0 since ¢ = t, which means all candidates
have the same 0 score. In their code, they give the
highest ranks (first rank) for all entities including
the ground truth object in this case. Thus, we fixed
their code for a fair comparison; we give an average
rank to entities who have the same scores.

6683

