
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5764–5773,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5764

An Empirical Study of Generation Order for Machine Translation

William Chan∗
Google Research, Brain Team
williamchan@google.com

Mitchell Stern∗
University of California, Berkeley
mitchell@berkeley.edu

Jamie Kiros
Google Research, Brain Team

kiros@google.com

Jakob Uszkoreit
Google Research, Brain Team
uszkoreit@google.com

Abstract

In this work, we present an empirical study
of generation order for machine translation.
Building on recent advances in insertion-based
modeling, we first introduce a soft order-
reward framework that enables us to train
models to follow arbitrary oracle generation
policies. We then make use of this frame-
work to explore a large variety of generation
orders, including uninformed orders, location-
based orders, frequency-based orders, content-
based orders, and model-based orders. Curi-
ously, we find that for the WMT’14 English
→ German and WMT’18 English→ Chinese
translation tasks, order does not have a sub-
stantial impact on output quality. Moreover,
for English→ German, we even discover that
unintuitive orderings such as alphabetical and
shortest-first can match the performance of a
standard Transformer, suggesting that tradi-
tional left-to-right generation may not be nec-
essary to achieve high performance.

1 Introduction

Neural sequence models (Sutskever et al., 2014;
Cho et al., 2014) have been successfully ap-
plied to a broad range of tasks in recent years.
While these models typically generate their out-
puts using a fixed left-to-right order, there has also
been some investigation into non-left-to-right and
order-independent generation in pursuit of qual-
ity or speed. For example, Vinyals et al. (2015)
explored the problem of predicting sets using se-
quence models. While this is a domain where
generation order should intuitively be unimpor-
tant, they nevertheless found it to make a substan-
tial difference in practice. Ford et al. (2018) ex-
plored treating language modeling as a two-pass
process, where words from certain classes are gen-
erated first, and the remaining words are filled

∗Equal contribution.

in during the second pass. They found that gen-
erating function words first followed by content
words second yielded the best results. Separately,
Gu et al. (2018) and Lee et al. (2018) developed
non-autoregressive approaches to machine trans-
lation where the entire output can be generated in
parallel in constant time. These models do away
with order selection altogether but typically lag
behind their autoregressive counterparts in trans-
lation quality.

More recently, a number of novel insertion-
based architectures have been developed for se-
quence generation (Gu et al., 2019; Stern et al.,
2019; Welleck et al., 2019). These frameworks li-
cense a diverse set of generation orders, including
uniform (Welleck et al., 2019), random (Gu et al.,
2019), or balanced binary trees (Stern et al., 2019).
Some of them also match the quality of state-of-
the-art left-to-right models (Stern et al., 2019). In
this paper, we utilize one such framework to ex-
plore an extensive collection of generation orders,
evaluating them on the WMT’14 English-German
and WMT’18 English-Chinese translation tasks.
We find that a number of non-standard choices
achieve BLEU scores comparable to those ob-
tained with the classical approach, suggesting that
left-to-right generation might not be a necessary
ingredient for high-quality translation. Our contri-
butions are as follows:
• We introduce a general soft order-reward frame-

work that can be used to teach insertion-based
models to follow any specified ordering.

• We perform a large empirical study on vari-
ous orders, including: uniform, random, left-
to-right, right-to-left, common-first, rare-first,
shortest-first, longest-first, alphabetical, and
model-adaptive.

• We show that there is little variation in BLEU
regardless of generation order. On the compet-
itive WMT 2014 English → German task, we

5765

Encoder

那个 男人 吃 了 小吃

Embedding

Self-Attention

Decoder

〈START〉 ate snack 〈END〉

{the, man} {a} {}

Embedding

Self-Attention + Cross-Attention

Content and Location Softmaxes

Figure 1: A schematic of the Insertion Transformer model for a Chinese-English translation pair. The model is
encouraged to predict the correct set of remaining words within each slot. Using our order-reward framework
(Section 3), we can derive the necessary weight distribution to apply to the set of correct actions in order to train
the model to follow any oracle generation policy of interest.

Serial generation:

Hypothesis Insertion

[] (ate, 0)
[ate] (snack, 1)
[ate, snack] (man, 0)
[man, ate, snack] (the, 0)
[the, man, ate, snack] (a, 3)
[the, man, ate, a, snack] (〈EOS〉, 5)

Parallel generation:

Hypothesis Insertions

[] (ate, 0)
[ate] (man, 0), (snack, 1)
[man, ate, snack] (the, 0), (a, 2)
[the, man, ate, a, snack] (〈EOS〉, 5)

Figure 2: Example decoding paths for serial and parallel generation using the Insertion Transformer.

further find that most orders are able to match
the performance of a standard base Transformer.

2 Background

Neural sequence models have traditionally been
designed with left-to-right prediction in mind. In
the classical setting, output sequences are pro-
duced by repeatedly appending tokens to the
rightmost end of the hypothesis until an end-
of-sequence token is generated. Though high-
performing across a wide range of application ar-
eas, this approach lacks the flexibility to accom-
modate other types of inference such as paral-
lel generation, constrained decoding, infilling, etc.
Moreover, it also leaves open the possibility that a
non-left-to-right factorization of the joint distribu-
tion over output sequences could outperform the
usual monotonic ordering.

To address these concerns, several recent ap-
proaches have been proposed for insertion-based
sequence modeling, in which sequences are con-
structed by repeatedly inserting tokens at arbitrary
locations in the output rather than only at the right-

most position. We use one such insertion-based
model, the Insertion Transformer (Stern et al.,
2019), for our empirical study. We give a brief
overview of the model in this section before mov-
ing on to the details of our investigation.

2.1 Insertion Transformer
The Insertion Transformer (Stern et al., 2019) is a
sequence-to-sequence model in which the output
is formed by successively inserting one or more to-
kens at arbitrary locations into a partial hypothesis.
This type of generation is made possible through
the use of a joint distribution over tokens and slots.
More formally, given an input x and a partial out-
put ŷt at time t, the Insertion Transformer gives
the joint distribution

p(c, l | x, ŷt) = InsertionTransformer(x, ŷt),

where c ∈ V is the content being selected from
the vocabulary V and 0 ≤ l ≤ |ŷt| is the insertion
location.

As its name suggests, the Insertion Transformer
extends the Transformer model (Vaswani et al.,

5766

2017) with a few key modifications to generalize
from ordinary next-token modeling to joint token-
and-slot modeling. First, the Insertion Trans-
former removes the causal attention mask from the
decoder, allowing for fully contextualized output
representations to be derived after each insertion.
Second, the Insertion Transformer pads the length-
n decoder input on both ends so that n+ 2 output
vectors are produced. It then concatenates adja-
cent pairs of output vectors to obtain n + 1 slot
representations, which in turn inform the condi-
tional distributions over tokens within each slot,
p(c | l). Lastly, it performs an additional atten-
tion step over the slot representations to obtain a
location distribution p(l), which is multiplied with
the conditional content distributions to obtain the
full joint distribution: p(c, l) = p(c | l)p(l). A
schematic of the architecture is given in Figure 1
for reference.

We note that Stern et al. (2019) also experi-
mented with a number of other architectural vari-
ants, but we use the baseline version of the model
described above in our experiments for simplicity.

2.2 Decoding

Once the model has been trained, it can be used
for greedy autoregressive sequence generation as
follows. At each step of decoding, we compute
the joint argmax

(ĉt, l̂t) = argmax
c,l

p(c, l | x, ŷt)

to determine what content ĉt should be inserted
at which location l̂t. We then apply this inser-
tion, increasing the sequence length by one, and
repeat this process until an end-of-sequence token
is produced. This is the serial decoding procedure
shown in the left half of Figure 2.

The model can also be used for parallel
partially-autoregressive decoding. Instead of com-
puting the joint argmax across all locations, we
instead compute the best content for each location:

ĉl,t = argmax
c

p(c | l, x, ŷt).

We then insert the highest-scoring tokens in paral-
lel for all slots that are not yet finished, increasing
the sequence length by anywhere between one and
n+ 1 tokens. This strategy visualized in the right
half of Figure 2.

Order Order Function O(a)

Uniform 0
Balanced Binary Tree |s− (i+ j)/2|
Random rank(hash(w))
Sequential (L2R vs. R2L) ±s
Frequency (Common vs. Rare) ±rank(frequency(w))
Length (Short vs. Long) ±rank(length(w))
Alphabetical (A→ z vs. z→ A) ±rank(w)
Adaptive (Easy vs. Hard) ± log p(a)

Table 1: Order functions for an action a corresponding
to the insertion of word w into slot s within span (i, j).
The rank terms are computed with respect to the set of
words from the valid action set A∗.

3 Soft Order-Reward Framework

Having presented our model of interest, we now
describe a general soft order-reward framework
that can be used to train the model to follow any
oracle ordering for sequence generation. Let O(a)
be an order function mapping insertion actions to
real numbers, where lower values correspond to
better actions, and let p(a) be the probability as-
signed by the model to action a. From these, we
construct a reward function R(a), an oracle policy
qoracle, and a per-slot loss L:

R(a) =

{
−O(a) ∀a ∈ A∗

−∞ ∀a 6∈ A∗

qoracle(a) =
exp(R(a)/τ)∑

a′∈A∗ exp(R(a
′)/τ)

L = KL(qoracle ‖ p)

Here, A∗ is the set of all valid actions. The tem-
perature τ ∈ (0,∞) controls the sharpness of the
distribution, where τ → 0 results in a one-hot dis-
tribution with all mass on the best-scoring action
under the order functionO(a), and τ →∞ results
in a uniform distribution over all valid actions. In-
termediate values of τ result in distributions which
are biased towards better-scoring actions but allow
for other valid actions to be taken some of the time.

Having defined the target distribution, we take
the slot loss L for insertions within a particular
slot to be the KL-divergence between the oracle
distribution qoracle and the model distribution p.
Substituting L in for the slot loss within the train-
ing framework of Stern et al. (2019) then gives the
full sequence generation loss, which we can use
to train an Insertion Transformer under any oracle
policy rather than just the specific one they pro-
pose. We describe a wide variety of generation

5767

orders which can be characterized by different or-
der functions O(a) in the subsections that follow.
A summary is given in Table 1.

3.1 Uninformed Orders
We evaluate two uninformed orders, uniform and
random. The uniform order O(a) = 0 gives
equal reward or equivalently probability mass to
any valid action. Consequently, this means we
give each order a uniform probability treatment.
We also experiment with random order O(a) =
rank(hash(w)), wherein we hash each word and
use the sorted hash ID as the generation order. The
random order forces the model to follow a spe-
cific random path, whereas the uniform order gives
equal probability mass to any order.

3.2 Location-based Orders
We explore two types of location-based orders,
balanced binary tree and monotonic orders. The
balanced binary tree order O(a) = |s − (i +
j)/2| encourages the model to place most of its
probability mass towards the middle tokens in a
missing span. Consequently, this encourages the
model to generate text in a balanced binary tree
order. We also experiment with soft monotonic
orders O(a) = ±s, or soft left-to-right and soft
right-to-left, which differ slightly from the left-to-
right teacher forcing traditionally used in seq2seq.
First, we still maintain a uniform roll-in policy
(see Section 3.6), which increases diversity during
training and helps avoid label bias. Additionally,
this endows the model with the ability to “look
back” and insert missing tokens in the middle of
the sequence during inference, as opposed to al-
ways being forced to append only at one end of
the sequence. The order reward is also soft (as de-
scribed by the τ term above), wherein we do not
place all the probability mass on the next mono-
tonic token, but merely encourage it to generate in
a monotonic fashion.

3.3 Frequency-based Orders
We evaluate two frequency-based orders: rare
words first via O(a) = rank(frequency(w))
and common words first via O(a) =
−rank(frequency(w)). For these orders, we
simply sort the words based on their frequencies
and used their rank as the order. We note the most
frequent words tend to be punctuation and stop
words, such as commas, periods, and “the” in
English.

3.4 Content-based Orders

We also explore content-based orders. One class
of orders is based on the word length: O(a) =
±rank(length(w)). This encourages the model to
either emit all the shortest words first or all the
longest words first.

We also explore alphabetical orderings O(a) =
±rank(w), where sorting is based on Unicode or-
der. We note that in Unicode, uppercase letters
occur before lower case letters. This biases the
model to produce words which are capitalized first
(or last), typically corresponding to nouns in Ger-
man. Additionally, for Chinese, the characters are
roughly sorted by radical and stroke count, which
bears a loose relation to the complexity and fre-
quency of the character.

3.5 Model-based Orders

The orders presented thus far are static, mean-
ing they are independent of the model. We
also explore orders which are adaptive based on
the model’s posterior. We also introduce “easy”
and “hard” adaptive orders induced by O(a) =
± log p(a). The adaptive orders look at the
model’s posterior to determine the oracle policy.
Consequently the loss is adaptive, as when the
model updates after each gradient step, the order
adapts to the model’s posterior.

In the “easy“ version, we use O(a) =
+ log p(a), which is similar to a local greedy soft
EM loss. We renormalize our current model’s pos-
terior over valid actions and optimize towards that
distribution. This pushes the model’s posterior to
what is correct and where it has already placed
probability mass. Intuitively, this reinforces the
model to select what it thinks are the easiest ac-
tions first. Conversely, the “hard” variant uses
O(a) = − log p(a) which encourages the model
to place probability mass on what it thinks are the
hardest valid actions. This is akin to a negative
feedback system whose stationary condition is the
uniform distribution.

3.6 Roll-in Policy

We follow Stern et al. (2019) and use a uniform
roll-in policy when sampling partial outputs at
training time in which we first select a subset size
uniformly at random, then select a random subset
of the output of that size. Repeated tokens are han-
dled via greedy left or right alignment to the true
output.

5768

Input: It would of course be a little simpler for the Germans if there were a coherent and standardised European policy, which
is currently not the case.

Output: Es wäre für die Deutschen natürlich ein wenig einfacher, wenn es eine kohärente und einheitliche europäische Politik
gäbe, was derzeit nicht der Fall ist.

Parallel decode (alphabetical):
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .
Es wäre für die Deutschen natürlich ein wenig einfacher , wenn es eine kohärent e und einheitliche europäische Politik gäbe , was derzeit nicht der Fall ist .

Input: according to the data of National Bureau of Statistics , the fixed asset investment growth , total imports and other data
in July have come down .

Output: 根据国家统计局的数据，7月份的固定资产投资增长、进口总额和其他数据有所下降。

Parallel decode (alphabetical):

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

根据 国家统计局 的 数据 ， 7 月份 的 固定资产 投资 增长 、 进口 总额 和 其他 数据 有所 下降 。

Figure 3: Example decodes for models trained to generate tokens in alphabetical (Unicode) order. Blue tokens
correspond those being inserted at the current time step, and gray tokens correspond to those not yet generated.
Note that the desired ordering applies on a per-slot basis rather than a global basis.

Input: It will be sung by all the artists at all the three
concerts at the same time.

Output: Es wird von allen Künstlern bei allen drei
Konzerten gleichzeitig gesungen.

Parallel decode (longest-first):
Es wird von allen Künstler n bei allen drei Konzert en gleichzeitig ges ungen .
Es wird von allen Künstler n bei allen drei Konzert en gleichzeitig ges ungen .
Es wird von allen Künstler n bei allen drei Konzert en gleichzeitig ges ungen .
Es wird von allen Künstler n bei allen drei Konzert en gleichzeitig ges ungen .
Es wird von allen Künstler n bei allen drei Konzert en gleichzeitig ges ungen .
Es wird von allen Künstler n bei allen drei Konzert en gleichzeitig ges ungen .

Figure 4: An example of longest-first generation.

4 Experiments

For our experiments, we train and evaluate mod-
els for each order on two standard machine trans-
lation datasets: WMT14 En-De and WMT18 En-
Zh. For WMT14 En-De, we follow the standard
setup with newstest2013 as our development set
and newstest2014 as our test set. For WMT18 En-
Zh, we use the official preprocessed data1 with no
additional data normalization or filtering, taking
newstest2017 to be our development set and new-
stest2018 our test set. En-Zh evaluation is carried

1http://data.statmt.org/wmt18/
translation-task/preprocessed/zh-en/

Input: imagine eating enough peanuts to serve as your
dinner .

Output: 想象一下，吃足够的花生作为你的晚餐。
Parallel decode (common-first):
想象 一下 ， 吃 足够 的 花生 作为 你 的 晚餐 。

想象 一下 ， 吃 足够 的 花生 作为 你 的 晚餐 。

想象 一下 ， 吃 足够 的 花生 作为 你 的 晚餐 。

想象 一下 ， 吃 足够 的 花生 作为 你 的 晚餐 。

想象 一下 ， 吃 足够 的 花生 作为 你 的 晚餐 。

想象 一下 ， 吃 足够 的 花生 作为 你 的 晚餐 。

Figure 5: An example of common-first generation.

out using sacreBLEU2 (Post, 2018). In both cases,
we train all models for 1M steps using sequence-
level knowledge distillation (Hinton et al., 2015;
Kim and Rush, 2016) from a base Transformer
(Vaswani et al., 2017). We perform a sweep over
temperatures τ ∈ {0.5, 1, 2} and EOS penalties
∈ {0, 0.5, 1, 1.5, . . . , 8} (Stern et al., 2019) on the
development set, but otherwise perform no addi-
tional hyperparameter tuning, borrowing all other
model and optimization settings from the base
Transformer.

2BLEU+case.mixed+lang.en-zh+numrefs.1+
smooth.exp+test.wmt18+tok.zh+version.1.
2.12

http://data.statmt.org/wmt18/translation-task/preprocessed/zh-en/
http://data.statmt.org/wmt18/translation-task/preprocessed/zh-en/

5769

Order En→ De En→ Zh

τ 0.5 1.0 2.0 0.5 1.0 2.0

Binary Tree 91% 86% 80% 88% 83% 78%
Random 86% 81% 72% 82% 77% 68%
Left-to-Right 95% 88% 77% 88% 82% 70%
Right-to-Left 95% 90% 78% 92% 83% 72%
Common First 92% 88% 80% 88% 84% 76%
Rare First 88% 81% 73% 83% 77% 67%
Shortest First 93% 88% 80% 91% 84% 76%
Longest First 92% 86% 77% 92% 84% 76%
Alphabetical (A→ z) 93% 87% 77% 88% 82% 73%
Alphabetical (z→ A) 90% 84% 74% 85% 78% 69%

Table 2: Percentage of insertions that follow the target order exactly, averaged over the development set.

4.1 Ability to Learn Different Orders

By and large, we find that the Insertion Trans-
former is remarkably capable of learning to gener-
ate according to whichever order it was trained for.
We give example decodes for three different gen-
eration orders in Figures 3, 4, and 5. In the first ex-
ample, we see that the alphabetical En-De model
adheres to the Unicode ordering for Latin char-
acters (punctuation → uppercase → lowercase),
and that the En-Zh model similarly adheres to the
Unicode order for Chinese (punctuation → CJK
characters sorted by radical and stroke count). In
the second example, the longest-first En-De model
generates subwords in decreasing order of length
as expected. Finally, in the third example, the
common-first En-Zh model begins with common
particles and punctuation before generating the
main content words.

We give a quantitative measurement of the suc-
cess of each model in Table 2, computing the
percentage of insertions across the development
set that adhered to the best-scoring action under
the desired ordering. Most models exhibit similar
trends, with the majority of En-De models achiev-
ing accuracies in excess of 90% when a low tem-
perature is used, and with corresponding results in
the mid-to-upper 80% range for En-Zh. Even the
random order based on token hashes has accura-
cies exceeding 80% for both languages, demon-
strating that the model has a strong capacity to
adapt to any oracle policy.

4.2 Test Results

Next, we measure the quality of our models by
evaluating their performance on their respective

test sets. The resulting BLEU scores are reported
in Table 3. The uniform loss proposed by Stern
et al. (2019) serves as a strong baseline for both
language pairs, coming within 0.6 points of the
original Transformer for En-De at 26.72 BLEU,
and attaining a respectable score of 33.1 BLEU on
En-Zh. We note that there is a slightly larger gap
between the normal Transformer and the Insertion
Transformer for the latter of 2.7 points, which we
hypothesize is a result of the larger discrepancy
between word orders in the two languages com-
bined with the more difficult nature of the Inser-
tion Transformer training objective.

Most of the content-based orderings
(frequency-based, length-based, alphabetical)
perform comparably to the uniform loss, and even
the random order is not far behind. The adaptive
orders perform similarly well, with easy-first
attaining one of the highest scores on En-De.
Curiously, in our model adaptive easy-order,
we were unable to identify any strong patterns
in the generation order. The model did have a
slight preference towards functional words (i.e.,
“,” and “der”), but the preference was weak. As
for location-based losses, the binary tree loss
is notable in that it achieves the highest score
across all losses for both languages. On the other
hand, we note that while the soft left-to-right and
right-to-left losses perform substantially better
than the hard loss employed in the original work
by Stern et al. (2019), performance does suffer
when using parallel decoding for those models,
which is generally untrue of the other orderings.
We believe this is due in part to exposure bias
issues arising from the monotonic ordering as

5770

Order En→ De En→ Zh

Serial Parallel Serial Parallel

Vaswani et al. (2017) This Work
Transformer 27.3 35.8

Stern et al. (2019) This Work
Uniform 27.12 26.72 32.9 33.1
Binary Tree 27.29 27.41 32.6 34.0

This Work
Random 26.15 26.10 32.6 32.4
Left-to-Right 26.37 25.56 31.7 31.2
Right-to-Left 26.60 24.49 32.4 30.8
Common First 26.88 26.86 33.5 32.9
Rare First 26.06 26.24 32.5 32.2
Shortest First 27.05 27.15 33.0 32.7
Longest First 26.45 26.41 32.8 33.2
Alphabetical (A→ z) 26.86 26.58 32.7 32.5
Alphabetical (z→ A) 27.22 26.37 33.1 33.0
Easy First 26.95 27.05 32.5 32.5
Hard First 25.85 26.30 32.4 32.9

Table 3: Test BLEU results for WMT14 En-De newstest2014 and WMT18 En-Zh newstest2018 with serial and
parallel decoding.

compared with the uniform roll-in policy that are
not shared by the other losses.

4.3 Performance vs. Sentence Length

For additional analysis, we consider how well our
models perform relative to one another conditional
on the length of the source sentence. Sentence
length can be seen as a rough proxy measurement
of the difficulty of translating a sentence. This
is to determine if whether some order variations
are able to achieve improved BLEU scores over
other models depending on the source sentence’s
length. For each sentence in the En-De and En-
Zh development sets, we compute their lengths
and bin them into groups of size 5, up to a max-
imum length of 50. Within each bin, we com-
pute sentence-level BLEU and take the mean score
across all sentences. This is done for each of our
model variants. Figure 6 illustrates the results of
this experiment. We observe a surprisingly small
model variance across all bin lengths. This sug-
gests that sentences that are difficult to translate
are difficult across all orderings, and no particu-
lar ordering appears strictly better or worse than
others. One small exception to this is a perfor-
mance fall-off of hard-first orderings for very long

sentences across both datasets. We also observe
a different distribution of BLEU scores across bin
lengths for En-De and En-Zh. In particular, En-De
models are approximately monotonic-decreasing
in performance as source length increases, while
on En-Zh performance is roughly flat across sen-
tence length. This also highlights the impor-
tance of taking additional diverse language pairs
into consideration, as certain translation properties
across one language pair may not be observed in
others.

Ultimately, given the similarity of the devel-
opment scores across sentence lengths and the
test scores for the various models, we come to
the surprising conclusion that for single-sentence
English-German and English-Chinese translation,
generation order is relatively unimportant insofar
as end-task performance is concerned.

5 Related Work

In recent work, several insertion-based frame-
works have been proposed for the generation of se-
quences in a non-left-to-right fashion for machine
translation (Stern et al., 2019; Welleck et al., 2019;
Gu et al., 2019). Stern et al. (2019) introduced
the Insertion Transformer and explored uniform

5771

5 10 15 20 25 30 35 40 45 50

Source Sequence Length

20

30

40

50

60

70

80
M

e
a

n
 S

e
n

te
n

ce
 B

LE
U

English-German

Uniform

Binary Tree

Random

Common First

Rare First

Shortest First

Longest First

A -> z

z -> A

Easy First

Hard First

(a) English → German

5 10 15 20 25 30 35 40 45 50

Source Sequence Length

20

30

40

50

60

70

80

M
e

a
n

 S
e

n
te

n
ce

 B
LE

U

English-Chinese

Uniform

Binary Tree

Random

Common First

Rare First

Shortest First

Longest First

A -> z

z -> A

Easy First

Hard First

(b) English → Chinese

Figure 6: Sentence-level BLEU scores as a function of sentence length for several of our model variants. Source
sentences in each development set are binned into groups of size 5, up to length 50.

and balanced binary tree orders. We built upon
and generalized this approach in order to explore
a much broader set of orders. Welleck et al. (2019)
explored insertions using a binary-tree formula-
tion. They also explored uniform and model-based
orders, but found them to lag significantly behind
their left-to-right baselines. Additionally, despite
using a binary-tree formulation for generation,
they did not explore tree-based orders. Gu et al.
(2019) introduced a model which did not explic-
itly represent the output canvas arising from in-
sertions, but rather used an implicit representation
through conditioning on the insertion sequence.
They also performed an exploration of different
generation orders, including random, odd-even,
common-first, rare-first, and a search-adaptive or-
der. Their search-adaptive order can be seen as
a global version of our local model adaptive or-
der, where we use the local greedy posterior as the
reward function, and they use the sequence level
log-probability as the reward function. Curiously,
in their framework, the random order fell signifi-
cantly behind the left-to-right baseline, while they
showed small gains in their search adaptive order.
One key difference between our work and Welleck
et al. (2019) and Gu et al. (2019) is that we use a
soft order-reward framework as opposed to teacher
forcing. This might explain some of the perfor-
mance differences, as our framework allows for

a more flexible training objective. Additionally,
since we use a uniform roll-in policy, our models
may have less of a label bias problem, as they are
trained to be able to continue from any partial out-
put rather than just those arising from the target
policy.

6 Conclusion

In this work, we investigated a broad array of
generation orders for machine translation using
an insertion-based sequence generation model, the
Insertion Transformer. We found that regardless
of the type of strategy selected, be it location-
based, frequency-based, length-based, alphabeti-
cal, model-based, or even random, the Insertion
Transformer is able to learn it with high fidelity
and produce high-quality output in the selected or-
der. This opens a wide range of possibilities for
generation tasks where monotonic orderings are
not the most natural choice, and we would be ex-
cited to explore some of these areas in future work.

References
Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In
EMNLP.

5772

Nicolas Ford, Daniel Duckworth, Mohammad
Norouzi, and George E. Dahl. 2018. The Impor-
tance of Generation Order in Language Modeling.
In EMNLP.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018. Non-
Autoregressive Neural Machine Translation. In
ICLR.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019.
Insertion-based Decoding with Automatically In-
ferred Generation Order. In arXiv.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the Knowledge in a Neural Net-
work. In NIPS Deep Learning and Representation
Learning Workshop.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
Level Knowledge Distillation. In EMNLP.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic Non-Autoregressive Neural
Sequence Modeling by Iterative Refinement. In
EMNLP.

Matt Post. 2018. A Call for Clarity in Reporting BLEU
Scores. In WMT.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion Transformer: Flexible
Sequence Generation via Insertion Operations. In
ICML.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In NIPS.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2015. Order Matters: Sequence to sequence for sets.
In ICLR.

Sean Welleck, Kiante Brantley, Hal Daume, and
Kyunghyun Cho. 2019. Non-Monotonic Sequential
Text Generation. In ICML.

5773

Appendix

Full development set results for En-De translation and En-Zh translation.

Order English → German English → Chinese

τ BLEU (+EOS) BLEU (+EOS) BLEU (+EOS) BLEU (+EOS)

+Parallel +Parallel

Stern et al. (2019) This Work
Uniform ∞ 22.39 (25.58) 24.31 (24.91) 28.6 (31.8) 30.4 (31.9)

Binary Tree 0.5 24.49 (25.55) 25.33 (25.70) 29.3 (31.6) 31.3 (31.9)
1.0 24.36 (25.43) 25.43 (25.76) 29.6 (32.0) 31.4 (32.2)
2.0 24.59 (25.80) 25.33 (25.80) 29.1 (32.2) 31.4 (32.3)

This Work
Random 0.5 23.82 (24.87) 23.97 (24.20) 28.5 (30.6) 29.4 (30.2)

1.0 24.03 (25.46) 24.58 (24.82) 28.6 (31.1) 30.0 (31.0)
2.0 24.00 (25.41) 24.68 (25.07) 28.9 (31.7) 30.4 (31.6)

L2R (Left-Aligned) 0.5 21.19 (24.46) 21.40 (21.57) 24.5 (30.0) 25.7 (28.3)
1.0 21.36 (24.02) 20.84 (21.25) 24.8 (29.8) 25.2 (27.8)
2.0 21.78 (24.21) 20.56 (21.11) 25.8 (29.8) 24.9 (27.6)

L2R (Right-Aligned) 0.5 21.77 (25.00) 22.62 (23.38) 25.6 (31.6) 27.3 (30.0)
1.0 21.85 (25.22) 22.78 (23.67) 25.3 (31.2) 27.0 (30.1)
2.0 21.01 (24.88) 22.29 (23.80) 23.5 (30.9) 25.8 (30.4)

R2L (Left-Aligned) 0.5 23.75 (25.04) 23.15 (23.25) 27.6 (31.4) 27.8 (28.6)
1.0 23.72 (25.29) 22.89 (22.89) 28.0 (31.6) 28.0 (29.3)
2.0 24.09 (25.64) 23.61 (23.85) 28.6 (31.9) 28.3 (29.9)

R2L (Right-Aligned) 0.5 19.23 (23.52) 19.70 (21.02) 21.3 (31.3) 22.3 (28.3)
1.0 19.56 (23.27) 20.20 (21.55) 20.9 (30.5) 21.6 (28.3)
2.0 20.19 (23.55) 20.84 (22.22) 20.3 (30.9) 21.5 (28.7)

Common First 0.5 25.20 (25.43) 25.05 (25.05) 29.9 (31.2) 30.5 (30.5)
1.0 25.46 (25.84) 25.76 (25.81) 30.5 (32.0) 31.1 (31.3)
2.0 25.30 (25.76) 25.75 (25.83) 30.4 (32.2) 31.4 (31.9)

Rare First 0.5 22.83 (24.30) 23.19 (23.62) 27.0 (29.5) 28.7 (29.7)
1.0 22.75 (24.56) 23.42 (23.99) 27.9 (30.7) 29.5 (30.5)
2.0 23.10 (24.79) 24.00 (24.36) 28.1 (31.2) 29.8 (31.1)

Shortest First 0.5 24.93 (25.55) 24.94 (25.01) 27.4 (30.3) 29.1 (30.0)
1.0 24.95 (25.72) 25.17 (25.28) 28.0 (30.9) 29.6 (30.8)
2.0 25.05 (25.85) 25.26 (25.48) 28.2 (31.4) 30.3 (31.5)

Longest First 0.5 23.59 (25.09) 24.24 (24.56) 29.2 (31.4) 30.5 (31.2)
1.0 23.53 (25.07) 24.68 (25.13) 29.2 (31.5) 31.0 (31.8)
2.0 24.09 (25.78) 24.93 (25.37) 29.0 (31.9) 31.1 (32.1)

Alphabetical (A → Z → a → z) 0.5 24.49 (25.15) 24.87 (24.91) 29.2 (31.0) 30.1 (30.6)
1.0 24.61 (25.19) 24.96 (25.12) 30.1 (32.0) 30.8 (31.4)
2.0 24.77 (25.67) 25.45 (25.71) 29.7 (32.1) 30.7 (31.8)

Alphabetical (z → a → Z → A) 0.5 24.16 (25.24) 24.56 (24.73) 29.2 (31.4) 30.3 (30.8)
1.0 24.19 (25.45) 24.65 (25.10) 29.3 (31.9) 30.7 (31.5)
2.0 24.26 (25.76) 25.02 (25.40) 29.7 (32.3) 31.0 (32.0)

Easy First 0.5 22.58 (24.09) 22.16 (22.63) 27.5 (30.2) 28.4 (29.7)
1.0 23.68 (25.08) 23.66 (24.03) 28.9 (31.6) 29.3 (30.7)
2.0 23.87 (25.43) 24.64 (25.26) 29.1 (31.9) 30.4 (31.7)

Hard First 0.5 20.01 (23.46) 23.16 (23.61) 24.7 (29.7) 28.7 (30.2)
1.0 20.96 (24.36) 23.76 (24.56) 25.4 (30.1) 29.1 (30.7)
2.0 21.97 (24.90) 24.33 (24.70) 26.4 (31.1) 29.9 (31.4)

Table 4: Development BLEU results for WMT14 En-De newstest2013 and WMT18 En-Zh newstest2017. The
first number in each column is the result obtained without an EOS penalty, while the second number in parentheses
is the score obtained with the best EOS penalty for that setting.

