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Abstract

BERT set many state-of-the-art results over
varied NLU benchmarks by pre-training over
two tasks: masked language modelling
(MLM) and next sentence prediction (NSP),
the latter of which has been highly criticized.
In this paper, we 1) clarify NSP’s effect on
BERT pre-training, 2) explore fourteen possi-
ble auxiliary pre-training tasks, of which seven
are novel to modern language models, and
3) investigate different ways to include mul-
tiple tasks into pre-training. We show that
NSP is detrimental to training due to its con-
text splitting and shallow semantic signal. We
also identify six auxiliary pre-training tasks
— sentence ordering, adjacent sentence predic-
tion, TF prediction, TF-IDF prediction, a Fast-
Sent variant, and a Quick Thoughts variant
— that outperform a pure MLM baseline. Fi-
nally, we demonstrate that using multiple tasks
in a multi-task pre-training framework pro-
vides better results than using any single aux-
iliary task. Using these methods, we outper-
form BERTg, on the GLUE benchmark using
fewer than a quarter of the training tokens.

1 Introduction

When Devlin et al. (2018) released BERT, a trans-
former network (Vaswani et al., 2017) trained using
a ‘masked language model’ (MLM) task and a ‘next
sentence prediction’ (NSP), it redefined the NLP
landscape, establishing itself as the state-of-the-art
(SoTA) on many natural language understanding
(NLU) benchmarks including the GLUE (Wang
et al., 2018), SQuAD (Rajpurkar et al., 2016), and
SWAG (Zellers et al., 2018) benchmarks.

Many models inspired by BERT have since sur-
passed its performance. However, in contrast to the
original BERT paper, many obtained better results
by excluding the NSP task. Some, such as XLNET
(Yang et al., 2019) and RoBERTa (Liu et al., 2019),
rely solely on a MLLM variant, while others (Wang

et al., 2020; Joshi et al., 2019; Cheng et al., 2019;
Sun et al., 2019b) incorporate one or more different
auxiliary loss functions. To our knowledge, there
is no published work comparing or fully exploring
auxiliary tasks for modern language models.

With multi-task learning’s long history in trans-
fer learning (Caruana, 1997; Parisotto et al., 2015;
Ren et al., 2018), its use in language understand-
ing models deserves further exploration. In this
paper, we study existing and novel auxiliary tasks
in a BERT paradigm to guide future research in
an informed manner. Specifically, we test and
provide insight on: 1) NSP’s effect on BERT pre-
training; 2) the result of 14 other auxiliary tasks
on BERT pre-training; 3) how to combine multiple
tasks in BERT pre-training; and 4) the advantages
of multi-task learning in BERT pre-training. Al-
though all experiments in this paper are conducted
using BERT, we believe the results are applicable
to BERT’s successors (e.g. XLNET, RoBERTa,
ERNIE...) and future models. The code is available
at https://github.com/StephAO/olfmlm.

2 Related work

As with most deep learning, language representa-
tions require large datasets. While there exists cor-
pora of labelled text, the vast majority of language
data exists as raw, unlabelled text. Accordingly,
many language embedding methods, and all those
described below, rely solely on unsupervised or
self-supervised tasks.

2.1 Pre-transformer sentence embeddings

Skip-Thoughts (Kiros et al., 2015) was the first
deep learning sentence embedding model. Its
training objective, inspired by word2vec (Mikolov
et al., 2013), used RNNs to reconstruct the previ-
ous and next sentence from a given sentence. Like
word2vec, similar sentences shared similar embed-
dings, and while it exhibited promising results, it
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was slow to train due to its encoding and double
decoding of sentences through RNNs. Hill et al.
(2016)’s FastSent tried to follow the same sequen-
tial sentence paradigm at a reduced training cost
by encoding a sentence using a bag-of-words ap-
proach and maximizing the probability of words
in adjacent sentences. Later, Quick Thoughts (Lo-
geswaran and Lee, 2018) managed to maintain the
sequential sentences objective while supporting or-
dered words. Using two RNN models, f(s) and
g(s), they embedded a first set of sentences using
f(s) and a second set consisting of the subsequent
sentences using g(s). They jointly train the two
models to predict the consecutive sentences from
a set of candidates by comparing inner products.
This resembles a referential game (David, 1969)
where f(s) and g(s) are the sender and receiver
respectively.

The previous methods relied on the premise that
adjacent text is semantically similar, but other sen-
tence embedding methods have relied on other lin-
guistic properties. The sequential denoising au-
toencoder (SDAE) (Hill et al., 2016) corrupts a
sentence through deletion or word order swapping,
encodes it, then attempts to decode the original un-
corrupted sentence from the encoding. This shares
the same underlying sequence-consistency concept
as BERT’s MLLM. Brahma (2018) also focused on
sequence consistency by predicting whether or not
a sentence had been corrupted through deletion, in-
sertion, replacement, or permutation. These meth-
ods only require individual sentences rather than a
set of sequential sentences.

2.2 Transformer-based sentence embeddings

The development of the transformer network
(Vaswani et al., 2017) overcame the sequential bot-
tleneck of RNNs by fully utilizing the paralleliza-
tion of modern processing units, and enabling lan-
guage models to train on significantly more data in
less time. GPT (Radford et al., 2018) and its succes-
sor GPT-2 (Radford et al., 2019) were the first mod-
els to fully leverage this breakthrough. Following
traditional language modelling, their training ob-
jective is to maximize the probability of a sequence
of tokens x using the products of their conditional
probabilities p(x) = [T (tn | tn-1, ..., t1).
Devlin et al. (2018) addressed the limitation of
unidirectional context in traditional language mod-
elling in their development of Bidirectional En-
coder Representations from Transformers (BERT)

— a transformer trained using a masked language
modelling (MLM) task and next-sentence predic-
tion (NSP) task on approximately 137 billion to-
kens from a 3.3 billion word corpus created from
the concatenation the BooksCorpus (Zhu et al.,
2015) and English Wikipedia datasets. The masked
language model modifies the traditional language
model to consider the bidirectional context in its
prediction. For each sequence, 15% of tokens are
replaced with a [MASK] token. The model is then
trained to predict the masked words. The NSP task
uses the output embedding of the [CLS] token that
prepends the sequence to predict whether the sec-
ond sentence follows the first or is from a different
document. BERT’s original paper claimed that this
task improved performance on downstream natural
language inference (NLI) tasks.

MASS (Song et al., 2019), ERNIE (Sun et al.,
2019a), and SpanBERT (Joshi et al., 2019) ex-
tended the MLM task by masking a sequence of
contiguous tokens instead of a single token. All
three demonstrated the superiority of this approach.
MASS used a seq2seq model (Sutskever et al.,
2014) to decode the sequence of masked tokens.
ERNIE used larger sequences of tokens over the
course of three stages — first identical to BERT, then
masking phrases, then masking full entities. They
additionally added a dialogue language model task
using the CLS token to classify between question-
response pairs and random pairs. SpanBERT uses
spans of sampled lengths and a ‘span boundary
objective’ where the token embeddings adjacent
to the span are used to predict the masked span.
Each of their additions provided gains on a range
of downstream tasks, with maximal gains using
both. They additionally showed that NSP is detri-
mental to training, hypothesizing that the context
splitting required for NSP is more detrimental than
the advantages provided from the task. Cheng et al.
(2019) argued that NSP is semantically shallow
and does not leverage BERT’S bidirectional nature,
and replaced NSP with a three-way classification
task of identifying whether one sentence follows or
precedes another, or is from a different document.
Using this simple change, they achieved a modest
improvement over the BERT baseline.

XLNET (Yang et al., 2019) used permuted sen-
tences to combine the true language modelling ob-
jective of GPT-2 (Radford et al., 2019) and BERT’s
insight of bi-directional context. It included the ad-
vancements from transformer-XL (Dai et al., 2019)
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to increase the context length, and created a larger
training dataset. It also ran a small ablation study
and found that removing the NSP task improved
overall results. XLNET beat BERT on 20 tasks,
achieving SoTA on 18. Shortly thereafter, Liu
et al. (2019) introduced RoBERTa, which followed
the core concepts of BERT closely, but optimized
design choices, such as dynamically masking to-
kens each epoch instead of pre-masking the entire
dataset, increasing the batch size, using full sen-
tences in each batch, and removing the NSP loss.
With these changes, and an increased dataset, they
matched XLNET’s performance.

Sun et al. (2019b)’s ERNIE 2.0 made further
gains in the GLUE leaderboard* by incrementally
adding seven tasks in a “continual multi-task learn-
ing” framework. They trained on ERNIE’s origi-
nal token/phrase/entity masking, capitalization pre-
diction, token-document prediction, sentence re-
ordering, sentence distance prediction, discourse
relations, and information retrieval (IR) relevance.
They provided no information on the benefit from
any of the individual tasks or the ordering of the
tasks. Raffel et al. (2019)’s TS5, also high on
the leaderboard, achieved their results using an
encoder-decoder variant of BERT. Through rigor-
ous experimentation of implementation details, cul-
minating in a gigantic 11 billion parameter model
trained on more data, using spans, multi-task learn-
ing on the supervised downstream tasks, and using
beam search, they achieved SoTA on a vast array
of tasks. Wang et al. (2020)’s StructBERT used
a word structural objective, where the model has
to recover a shuffled tri-gram, and sentence struc-
tural objective — identical to Cheng et al. (2019)’s
three-way classification task, to place high on the
leaderboard as well.

3 Method

3.1 Baselines

Our primary motivation in this paper is to study and
survey auxiliary pre-training tasks for multi-task
learning for modern language understanding mod-
els. In this case, ‘modern’ is a transformer-based
model pre-trained on a large unlabelled corpus us-
ing a form of masked language modelling. This
definition captures the large majority of recently
successful language models. For our baseline we
choose BERT, as it is the basis for subsequent mod-

*https://gluebenchmark.com/
leaderboard

els, but only include the MLLM task as the benefits
of the NSP task are debated (Liu et al., 2019; Yang
et al., 2019). For computational reasons we use
BERTg, (L = 12, H = 768, A = 12, Total Pa-
rameters=110M), and use the uncased WordPiece
tokenizer (Wu et al., 2016) with vocabulary size of
30522 provided by Google!.

3.2 Auxiliary pre-training tasks

To provide a fair comparison and due to compu-
tational constraints, we limit the scope of our
investigation to auxiliary tasks that can be directly
used on any corpus of unlabelled data, do not
require any language decoding, and require at most
one additional classification layer. This excludes
the discourse relation task, the IR relevance task
(Sun et al., 2019b), and the dialogue language
modelling task (Sun et al., 2019a) as they require
datasets that violate these constraints. We also
exclude a Skip-Thoughts approach as sequentially
decoding outputs would require significantly more
computational resources. Token level tasks only
use token embeddings as input. Sentence-level
tasks use the [CLS] token embedding as input.
The FastSent variant uses both, but we label it
as a sentence-level task as it does require the
sentence embedding (from the [CLS] token). Tasks
that have not previously been applied to modern
language models are italicized. We investigate the
following tasks:

Token level tasks

1. Term Frequency prediction (TF): Regression
predicting a token’s frequency in the rest of
the document. The frequency is re-scaled be-
tween 0 and 10 per document.

2. Term Frequency-Inverse Document Frequency
prediction (TF-IDF): Regression predicting a
token’s tf-idf that has been re-scaled between
0 and 10 per document.

3. Sentence Boundary Objective (SBO): Predict
the masked token given the embeddings of the
adjacent tokens.

4. Trigram-Shuffling (TGS): 6-way classifica-
tion predicting the original order of shuffled
tri-grams.

5. Token Corruption Prediction (TCP): Binary

fhttps://github.com/google-research/
bert

4972


https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://github.com/google-research/bert
https://github.com/google-research/bert

classification of whether a token has been cor-

rupted (inserted, replaced, permuted) or not.
6. Capitalization Prediction (Cap.):

whether a token is capitalized or not.

7. Token Length Prediction (TLP): Regression to
predict the length of the WordPiece token.

Binary,

Sentence level tasks

8. Next Sentence Prediction (NSP): Binary,
whether the second sentence follows the first
or comes from a separate document.

9. Adjacent Sentence Prediction (ASP): 3-way
classification whether the second sentence pro-
ceeds the first, precedes the first, or they come
from separate documents.

10. Sentence Ordering (SO): Binary, predicting if
the two sentences are in or out of order.

11. Sentence Distance Prediction (SDP): 3-way
classification of whether the second sen-
tence proceeds, the two sentences are non-
contiguous from the same document, or come
from separate documents.

12. Sentence Corruption Prediction (SCP): Bi-
nary classification of whether a tokens in a
sentence have been corrupted (inserted, re-
placed, permuted) or not.

13. Quick Thoughts variant (QT): Split each batch
into two, where the second half contains the
subsequent sentences of the first half (e.g.
with batch size 32, sentence 17 follows sen-
tence 1, sentence 18 follows sentence 2,...).
We use an energy-based model to predict the
correct continuation for each sentence in the
first half where the energy between two sen-
tences is defined by the negative cosine sim-
ilarity of their [CLS] embeddings. We use
one model to encode both halves concurrently.
See Figure 1.

14. FastSent variant (FS): Split each batch into
two, where the second half contains the subse-
quent sentences of the first half (same as QT
above). The loss is defined as cross-entropy
between 1.0 and the cosine similarity of a
sentence [CLS] embedding and the other sen-
tence token embeddings ([CLS] embedding
from the first half with token embeddings
from the second half and [CLS] embeddings
from second half with token embeddigns from
the first half). We use one model to encode
both halves concurrently.

3.3 Combining tasks

BERT originally proposed summing the MLM and
NSP losses directly. ERNIE uses significantly more
losses and proposes a continual multi-task learn-
ing framework to incorporate them, in which they
incrementally add new tasks while sampling pre-
viously learnt tasks. To provide insight on how
best to combine tasks, we investigate the six fol-
lowing ways of combining a set of tasks for BERT
pre-training:
1. Sum losses from all tasks (sum.)
2. Incrementally add tasks, summing the losses
from all added tasks (Inc.)
Alternating between tasks each iteration (Alt.)
4. Alternating between auxiliary tasks each iter-
ation and summing it with MLM (Alt.+)
5. ERNIE’s continual multi-task learning
(CMTL), for more detail see Appendix A
6. ERNIE’s continual multi-task learning on aux-
iliary tasks summed with MLM (CMTL+)
We note that both a direct summation and a simple
incremental approach cannot accommodate tasks
that require different input structures — for example
sentence ordering, which requires that the two sen-
tences are always adjacent, cannot be trained simul-
taneously with next sentence prediction, which re-
quires sentences from different documents at times
— or different corpora, such as ERNIE 2.0’s IR rele-
vance dataset.

e

3.4 Input Representation

To construct the input embedding to the trans-
former, we sum token embeddings, learned position
embeddings, learned sentence type (sentence A or
B) embeddings, and, to enable ERNIE’s continual
multi-task learning, a learned task id embeddings .

3.5 Dataset

We follow precedent in using the BookCorpus?
(Zhu et al., 2015) and Wikipedia dataset as our cor-
pora. We filter the Wikipedia corpus in the same
fashion as BERT, ignoring lists, tables, and headers.
We additionally filter documents that have: fewer
than 10 words or fewer than 4 sentences. This
excludes small uninformative documents. We addi-
tionally segment long documents into documents
of roughly 1024 tokens. This creates a corpus with
2.7 billion words (3.8 billion tokens) divided into
6.8 million documents.

#Unfortunately, the BookCorpus is no longer publicly
available.
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Ao Tack MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RIE | Avg.
: 392k | 363k | 108k | 67k | 85k | 57k | 35K |25k | -
None (MLM) | 803 | 88.0 | 867 | 91.6 | 515 | 849 | 869 | 60.6 | 788
TF 815 | 88.7 | 89.1 | 909 | 468 | 870 | 873 | 621 | 192
TF-IDF 812 | 88.6 | 894 | 905 | 467 | 868 | 888 | 632 | 79.4
SBO 80.5 | 88.0 | 89.1 | 925 | 488 | 854 | 866 | 560 | 784
TGS 80.5 | 882 | 87.1 | 906 | 503 | 854 | 87.8 | 58.1 | 785
TCP 813 | 885 | 88.0 | 91.5 | 497 | 857 | 87.0 | 581 | 787
Cap. 81.1 | 88.6 | 870 | 913 | 480 | 858 | 860 | 57.8 | 782
TLP 808 | 883 | 877 | 915 | 470 | 860 | 86.1 | 59.6 | 784
NSP 799 | 87.1 | 860 | 909 | 483 | 840 | 854 | 581 | 775
ASP 804 | 884 | 889 | 899 | 422 | 869 | 873 | 682 | 79.0
SO 809 | 88.6 | 892 | 898 | 441 | 874 | 864 | 66.1 | 79.1
SDP 799 | 879 | 878 | 903 | 477 | 859 | 877 | 625 | 787
QT 816 | 88.6 | 887 | 914 | 556 | 862 | 87.1 | 635 | 803
FS 81.9 | 88.6 | 884 | 915 | 551 | 866 | 883 | 592 | 80.0
SCP 804 | 884 | 876 | 904 | 466 | 853 | 864 | 592 | 78.0

Table 1: Test results on GLUE development set for models pre-trained on MLM (No Aux.) and MLM + auxiliary
tasks trained over 10 billion tokens. F1 scores are reported for QQP and MRPC, Spearman correlations are reported
for STS-B, and accuracy scores are reported for the other tasks. Refer to section 3.2 for a description of each task.

Best results in each column are underlined. Averages above two estimated os of the MLM baseline are bolded.

MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Avg.

392k | 363k | 108k 67k 8.5k 5.7k 3.5K 2.5k -
MLM 80.3 88.0 86.7 91.6 51.5 84.9 86.9 60.6 | 78.8
QT 81.6 88.6 88.7 914 55.6 86.2 87.1 63.5 | 80.3
Sum. 82.0 89.0 | 90.5 91.2 49.4 88.3 89.1 70.8 | 814
Inc. 80.9 88.8 89.6 90.8 50.6 87.6 86.3 69.3 | 80.6
Alt. 79.8 88.4 89.3 89.3 443 86.8 86.2 704 | 794
Alt+ 81.5 89.0 | 90.1 90.6 55.3 87.9 87.0 68.6 | 81.3
CMTL 79.6 88.2 88.8 89.7 40.3 87.1 86.1 66.8 | 784
CMTL+ | 81.7 88.6 90.3 91.3 539 88.5 89.2 704 | 81.7

Table 2: Results on GLUE development set for models pre-trained on MLM (our baseline), MLM + QT (best
single auxiliary task model) and different combinations of the best performing tasks. Refer to section 3.3 for more
detail. Best results in each column are underlined. Averages above two estimated os of the MLM baseline are

bolded.

3.6 Pre-Training Details

For all tests, we train on 10 billion tokens using
an Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1e-4 that warms-up over the first
1% of tokens and linearly decays after, batch size
= 128, max sequence length = 128, 5; = 0.9, B35
=0.999, L2 weight decay of 0.01, and a dropout
probability of 0.1. In accordance with other papers,
we use a gelu activation (Hendrycks and Gimpel,
2016). Using four p100 GPUs, it takes between 13
and 15 hours to train a model for each one billion
token epoch depending on the tasks used.

3.7 Fine-Tuning Details

All models are tested on the GLUE (Wang et al.,
2018) benchmark, as it has been accepted by the
community as a benchmark for NLU. We also com-
pare the final best model and our baseline on the
SuperGLUE (Wang et al., 2019a) benchmark. Fol-
lowing Devlin et al. (2018); Cheng et al. (2019), we

disregard GLUE’s problematic WNLI task. Due to
GLUE’s private test set, and the number of exper-
iments performed, the results are on the available
development set except for the final results in Ta-
bles 3 and 4. To fine-tune the model on the GLUE
dataset, we use Jiant’s (Wang et al., 2019b) pro-
vided code’. We limit the maximum number of
epochs to 3 and we run the fine-tuning procedure
three times with learning rates = Se-5, 3e-5, 2e-5
and take the best results for each task individu-
ally across these runs. This is done to reduce the
variance in the results that comes from the low-
resource tasks CoLA, RTE, and MRPC. For all
other fine-tuning parameters, we use the default
values provided by jiant unless otherwise stated.

3.8 Final Model

Our final CMLT+ model is shown in Figure 1 to
help visualize the inputs to each task.

Shttps://github.com/nyu-mll/jiant
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Figure 1: Architecture used for the combined tasks tests. Sentences 17-32 are the continuations of sentences 1-16
respectively (1-17, 2-18, 3-19...). The two halves of the batch are only split for clarity of the Quick Thoughts
variant task; they are embedded at the same time by the same network. Though only depicted on only one token,
the token level tasks (MLM, TF-IDF prediction) are trained across all token embeddings.

4 Results

In this section, we present the results from an ar-
ray of different tests. Due to the stochastic nature
of the training, we would ideally run each test nu-
merous times. However, this is prohibitively ex-
pensive due to the computational costs. Building
from Raffel et al. (2019)’s experimental approach,
we instead calculate the standard deviation for 5
independent trainings of the baseline MLM-only
model, the MLM + NSP model, and our CMTL+
model. We find OMLM = 0.198, ONSP — 0.222,
oomrL+ = 0.273, and use the highest, 0 = 0.273,
as an estimate for the standard deviation across
all experiments. See Appendix B for more detail.
This is comparable to Raffel et al. (2019)’s esti-
mated standard deviation of 0.235. In each table,
we boldface all average GLUE scores that are two
estimated standard deviations above the MLM base-
line. For the average GLUE score, we follow Wang
et al. (2018) and average the macro averages of
each task. This is different than averaging the num-
bers in a row as we only report one metric per task.

4.1 Understanding NSP

To understand the role of NSP in BERT pre-training
we compare the performance of three models: the
first trained on MLM; the second trained on MLM
and NSP; and the third trained on MLM with NSP’s
context split, but without NSP’s loss, which we la-
bel split. Contrasting the MLLM model to the split
model explicates the impact of splitting the inputs
context, while comparing the NSP model to the
split model clarifies the benefits of the NSP loss.
As expected, figure 2 a) demonstrates a clear perfor-
mance drop when splitting contexts. From figure 2
b) and 2 ¢), we see the biggest drops are from infer-
ence tasks. We hypothesize that providing a model
split contexts and no signal to differentiate it from
contiguous text hinders it’s ability to understand
the logical flow of language. As we contrast the
NSP model and the split model, we see that adding
such a signal does indeed improve the results on
inference tasks, especially in early stages of train-
ing. However, as training progresses, its benefit
stagnate. This may be because, as other papers
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Figure 2: Average results on a) all GLUE tasks, b) only inference tasks (MNLI, QNLI, RTE), and c¢) non-inference
tasks (QQP, SST-2, CoLA, STS-B, MRPC) for models trained on MLM, MLM + NSP, and MLM with NSP’s split
context but no NSP loss (Split) throughout training over 10 billion tokens.

have proposed, NSP is semantically shallow and  beit shuffled. The model trained using the Quick
can often be solved easily through lexical overlap.  Thoughts variant (QT) performs the best out of all
Interestingly, figure 2 ¢) shows that the NSP loss  the above models. We hypothesize that the loss,
provides no benefits, and may indeed be detrimen-  based on cosine similarity, provides a soft clus-
tal towards non-inference tasks even when com-  tering around semantically similar topics, which
pared to the split model. Finally, we see that the = produces more distinguishable embeddings. The
MLM model continues to improve throughout each ~ FastSent variant (FS) provides a similar signal and
stage of training, whereas both the NSP model and  performs the second best, suggesting that some
the split model see have diminishing returns with ~ form of soft clustering does provide substantial
more training, indicating that splitting the context  benefit to pre-training. TF-IDF, and to a lesser ex-
imposes inherent limitations on language models.  tent TF, prediction also improve performance on

.. a range of downstram tasks. This aligns with Sun
4.2 Auxiliary Tasks et al. (2019b)’s observations that identifying high
We first compare the 14 auxiliary tasks in Table  value words (and discounting filler words) provides
1 to a MLM baseline (No Aux.). As noted in the  a useful signal for language models. All other tasks
previous section, and supporting many recent pa-  fail to provide any meaningful gains. Of these, the
pers (Liu et al., 2019; Yang et al., 2019; Joshi et al.,  context distortion from the corruption prediction
2019), NSP is detrimental to training. As discussed  tasks (TC and SC) likely outweigh their benefit.
by Cheng et al. (2019) and reinforced by the results  Additionally, MLLM is already a form of corruption,
of (Wang et al., 2020), next sentence prediction  making TC and SC partially redundant. Our re-
provides a shallow supervision signal, and is often  sults did not find the Sentence Boundary Objective
solvable through lexical overlap. Adjacent sen- (SBO) to be beneficial. However, as it was origi-
tence prediction and sentence ordering on the other  nally implemented for spans, this does not discount
hand require deeper semantic understanding of the  the results of Joshi et al. (2019); in our context,
structure of language. Our results clearly support ~ which only masks a single word, it is likely re-
this claim, with SO and ASP outperforming MLM  dundant with MLM. The trigram shuffling (TGS)
and NSP on all inference tasks and greatly out-  tasks similarly did not provide the value exhibited
performing all auxiliary tasks on RTE, the only  in Wang et al. (2020). However, due to a lack of
low-resource inference task. Additionally, they are  details and code in the original paper, implemen-
less penalized by context splitting, which we have  tation details may be at fault. Token length and
shown to degrade performance; NSP and SDP cut  capitalization prediction, which were implemented
the context in half 50% of the time, ASP cuts the  as other proxies for word importance prediction,
context in half a third of the time, and sentence  appear to be too noisy for their intended purpose.
ordering preserves the full context in all cases, al-
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MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Avg. | Dev. Set Avg.
BERTguse 84.6/83.4 | 71.2 90.5 93.5 52.1 85.8 88.9 66.4 | 79.6 -
MLM baseline 81.8/81.3 | 70.0 87.1 90.4 453 80.6 87.3 59.2 | 76.1 80.0
CMTL+ 83.8/82.9 | 71.7 90.7 92.2 56.3 83.4 88.8 669 | 80.1 83.2
BERTLare (330M) | 86.7/85.9 | 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1 -
RoBERTa (355M) | 90.8/90.2 | 74.3 95.4 96.7 67.8 91.9 92.3 88.2 | 87.88 -

T5 (11B) 92.2/919 | 75.1 96.9 97.5 71.6 92.8 92.8 92.8 | 89.78 -
Table 3: GLUE test results, scored by the evaluation server excluding the problematic WNLI task.

Matched/mismatched accuracy are reported for MNLI, F1 scores are reported for QQP and MRPC, Spearman
correlations are reported for STS-B, and accuracy scores are reported for the other tasks. The BERTg, results
are from the original BERT paper (Devlin et al., 2018). The MLM baseline and CMTL+ models are our imple-
mentations. We include the performance of our models on the development set for reproducibility. Best results in
each column for models of comparable size are underlined. For context, we additionally include results from the
GLUE leaderboard for BERTY 4¢e, ROBERTa, and T5, and their respective size measured by number of parameters.
BERTg,se, MLM baseline, and CMTL+ all have a size of 110M parameters.

BoolQ | CB | COPA | MultiRC | ReCoRD | RTE | WiC | WSC | Avg.
MLM baseline 69.2 67.8 59.0 30.7 33.0 594 | 61.0 | 65.1 | 55.7
CMTL+ 720 | 729 | 62.8 349 33.0 64.0 | 649 | 65.1 | 58.7
Bertparge (330M) 77.4 79.5 70.6 47.1 71.7 71.7 | 69.6 | 65.1 69.0
T5 (11B) 91.2 954 | 948 75.7 93.8 925 | 769 | 93.8 | 89.3

Table 4: SuperGLUE test results, scored by the evaluation server. Both models use most common class prediction
for ReCoRD and WSC. The MLM baseline also uses most common class prediction for MultiRC. Best results
in each column for models of comparable size are underlined. For context, we additionally include results from
the SuperGLUE leaderboard for BERT 4 and TS5, and their respective size measured by number of parameters.

CMTL+ and MLM baseline both have sizes of 110M parameters.

4.3 Combining Tasks

To test combining multiple tasks, we use all aux-
iliary losses that substantially outperform a pure
MILM baseline. For tasks that provide similar sig-
nals, we select the one that achieved a higher aver-
age on the previous test; QT is chosen over FS and
TF-IDF is chosen over TF. Between ASP and SO,
which have a statistically insignificant difference,
we choose SO as it retains the full context, as any
split context from ASP would likely be detrimental
to the other tasks. This provides 4 tasks for the
multi-task training: MLM, QT, SO, and TF-IDF.

Table 2 shows a stark contrast between incor-
porating an MLLM loss term in each iteration com-
pared to treating MLM equivalent to other tasks
when switching between them; Alt.+ and CMTL+
both outperform their counterparts by 1.9 and 3.3
percent respectively. Our results indicate that multi-
task training with MLM preserves the benefits of
each individual task, with the combined models re-
taining QT’s high CoLA score and SO’s high RTE
score. Further, these gains are additive in most
cases: for QNLI, MNLI, and STS-B the combined
models performs better than any single auxiliary
task models. This leads to a model that vastly out-
performs the baseline MLM model or using any

singular auxiliary task.

Between combination methods that use MLM in
every iteration, the incremental approach appears to
be the worse, while summing everything, alternat-
ing auxiliary tasks (Alt.+), and continual multi-task
learning on auxiliary tasks (CMTL+) all perform
similarly, with CMTL+ slightly outperforming the
other two, which supports Sun et al. (2019b)’s re-
sults. Interestingly, both approaches where tasks
vary each iteration (Alt.+ and CMTL+) see a signifi-
cant benefit on the CoLA task. While not beneficial
in our framework, an alternating pattern or CMTL
have the additional benefit of enabling different in-
put structures or the use of different corpora (such
as ERNIE 2.0’s IR relevance corpora), which can-
not be done using a direct summation.

4.4 Final Results

For our final test, we train our baseline MLM model
and CMTL+ model on 32 billion tokens and present
the results using the GLUE and SuperGLUE evalu-
ation servers in Tables 3 and 4 respectively. When
fine-tuning these models, we run an exhaustive hy-
per parameter search on learning rates = le-5, 2e-5,
3e-5, 5e-5, batch sizes = 16, 32, and number of
epochs = 2, 3, 4. The results show that the CMTL+
model — trained on MLM, QT, SO, and TF-IDF in

4977



a continual multi-task learning framework — vastly
outperforms the MLLM baseline in every task. Fur-
ther, our model trained on 32 billion tokens outper-
forms the original BERTg,., which required 137
billion tokens. While we include larger models —
BERTLyrge, ROBERTa, and T5 — in the tables for
context, we remind the readers that these results
are not comparable to our results. First, they are
larger, with sizes of 330 million, 335 million, and
11 billion parameters respectively, compared to our
110 million parameters. Second, RoBERTa and T5
are trained using a much larger dataset of 160 GB
and 750 GB compared to our (and BERT yg’s)
13 GB. Finally, BERT 3¢e, ROBERTa, and TS5 are
trained on more tokens, training on 137 billion, 2.2
trillion, and 1 trillion tokens respectively compared
to our 32 billion tokens. While the results are not
comparable, we hope that the tasks we used in our
model can be utilized by newer and larger models
to improve their understanding of language.

5 Discussion

Our results support several recent papers: we sup-
port Liu et al. (2019); Yang et al. (2019); Joshi
et al. (2019)’s claim that NSP hinders BERT pre-
training, especially for non-inference tasks, due to
cutting context half the time; we reinforce Cheng
et al. (2019); Wang et al. (2020)’s proposal that
NSP prediction is a semantically shallow and of-
ten solvable through lexical overlap and that using
a task that requires understanding the ordering of
contiguous text provides a stronger semantic sig-
nal; and we uphold Sun et al. (2019a,b)’s idea that
a language model should be trained in a multi-task
setting. Further, we offer novel methods and in-
sights. Providing a signal to reduce the embedding
distance between semantically similar sentences,
as in our FastSent or QuickThought variants do,
produces a strong boosts to downstream tasks, with
the hypothesis that they produce more distinguish-
able embeddings. Providing a signal that relays
word importance, such as TF-IDF and TF, likewise
produces substantial benefit to BERT pre-training.
We show strong evidence that a MLM variant loss
should always be included when multi-task learn-
ing. Finally, we demonstrate the value of multi-task
learning for language model pre-training; combin-
ing multiple beneficial tasks leads to better results
than using any of the individual tasks alone.

As our focus was a breadth-based search of pos-
sible auxiliary tasks, we believe that further gains

are possible through a deeper exploration of each
task. Using soft labels in ASP for sentences that
are near (but not directly adjacent to) the other sen-
tence has been shown to provide improvements
(Cheng et al., 2019). (n!)-way classification with
n sentence-pieces for sentence ordering is a more
challenging task that could provide additional ben-
efits. Other similarity metrics, such as dot product
or Euclidean distance, may provide more useful for
the FS or QT methods. Beyond using a loss based
on a similarity metric, it is possible that other unsu-
pervised clustering algorithms could be beneficial.
Currently, each task has different loss ranges based
on the nature, and not the inherent value, of the task.
As some tasks may be more useful than others, it is
likely that weighting each task based on some value
metric could prove beneficial. Groups with suffi-
cient computational resources may also be inter-
ested in exploring how the ordering in the continual
multi-task learning framework affects downstream
tasks. Lastly, we do not tune hyperparameters, us-
ing only the stated values from previous papers for
all our experiments. We leave the above potential
to future work.

6 Conclusion

We investigate and support several reasons why
next-sentence prediction is ill-suited for BERT pre-
training, we provide better inference-based alterna-
tives, and we develop other novel auxiliary tasks
based on word importance and soft clustering that
provide substantial benefits to BERT pre-training.
We also demonstrate the benefit of multi-task learn-
ing in BERT pre-training, and identify key factors
on how to best combine tasks. We hope the insights
provided here will help guide the development of
better language models in the future.
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A Continual Multi-Task Learning

Though no explicit details are provided for ERNIE
2.0’s continual multi-task learning (CMTL), we
infer the following algorithm from their description
and example:

1. Split training into N stages where N is the
number of non-jointly trained tasks (e.g. in
our final model, only auxiliary tasks are
counted, MLM is not counted). Each stage
defines a number of tokens to be trained on for
each task. When each task has been trained on
for the specified number of tokens, the train-
ing moves to the next stage.

2. Calculate the token chunk size, C' = T'/(N *
(N +1)), where T is the total number of train-
ing tokens.

3. Each stage, S;, a new task is introduced.
During that stage the new task is trained on
C'x(1+1) tokens, previously introduced tasks
are trained on C' tokens, and yet to be intro-
duced tasks are trained on 0 tokens.

The method can use iterations or tokens. The
above method trains on each task using the same
number of tokens/iterations, gradually incorporat-
ing more tasks, while still training on previous
tasks. Below we provide two examples. The first
from (Sun et al., 2019b) which uses four tasks and
200k iterations, the second from our final combined
model which uses three tasks (MLM not included)
and 10 billion tokens.

’ Task ‘ Stage 1 ‘ Stage 2 ‘ Stage 3 ‘ Stage 4 ‘

1 20k 10k 10k 10k
2 0 30k 10k 10k
3 0 0 40k 10k
4 0 0 0 50k

Table 5: Training using CMTL with 4 tasks over 200k
total iterations. Example from Sun et al. (2019b)

’ Task ‘ Stage 1 ‘ Stage 2 ‘ Stage 3 ‘

1 1.67B | 0.83B | 0.83B
2 0 2.5B 0.83B
3 0 0 3.33B

Table 6: Training using CMTL with 3 tasks over 10B
total iterations.
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B Significance testing

To further solidify our claims, we perform signifi-
cance testing on our results between NSP and the
MLM baseline, as well as our CMTL+ model and
the MLLM baseline. For each NSP, MLLM, and the
CMTL+ model we evaluate 5 runs, found in table
7. We first run a Lilliefors test, and find that the
p-values are large enough that we accept the null
hypothesis that our the data follows a normal distri-
bution for each of our sets of experiments. We then
run an independent t-test between NSP and MLM,
and between the our CMTL+ and MLM. We correct
the p-values using Bonferroni correction and find a
p-val of 2.547e — 03 between NSP and MLM and
a p-val of 1.069e — 06 between CMTL+ and MLM.
In both cases, the p-values are small enough that
we reject the null hypothesis that the samples come
from the same distribution, supporting our hypoth-
esis that MLM is better than NSP, and CMTL+ is
better than MLM.

Run MLM | NSP | CMTL+
1 78.18 | 77.663 | 80.56
2 77.90 | 77.363 | 80.30
3 78.38 | 77.775 | 80.66
4 78.25 | 77.275 | 80.45
5 77.96 | 77.338 | 81.03
Mean: 78.13 | 77.483 | 80.60
Std. Dev.: 0.20 0.22 0.27
Lilliefors p-val | 0.712 | 0.148 0.659

Table 7: Average GLUE score results on 5 different
trainings.
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