When BERT Plays the Lottery, All Tickets Are Winning

Sai Prasanna*
Zoho Labs
Zoho Corporation
Chennai, India

saiprasanna.r@zohocorp.com

Abstract

Large Transformer-based models were shown
to be reducible to a smaller number of self-
attention heads and layers. We consider this
phenomenon from the perspective of the lot-
tery ticket hypothesis, using both structured
and magnitude pruning. For fine-tuned BERT,
we show that (a) it is possible to find sub-
networks achieving performance that is com-
parable with that of the full model, and (b)
similarly-sized subnetworks sampled from the
rest of the model perform worse. Strikingly,
with structured pruning even the worst possi-
ble subnetworks remain highly trainable, indi-
cating that most pre-trained BERT weights are
potentially useful. We also study the “good”
subnetworks to see if their success can be at-
tributed to superior linguistic knowledge, but
find them unstable, and not explained by mean-
ingful self-attention patterns.

1 Introduction

Much of the recent progress in NLP is due to the
transfer learning paradigm in which Transformer-
based models first try to learn task-independent
linguistic knowledge from large corpora, and then
get fine-tuned on small datasets for specific tasks.
However, these models are overparametrized: we
now know that most Transformer heads and even
layers can be pruned without significant loss in
performance (Voita et al., 2019; Kovaleva et al.,
2019; Michel et al., 2019).

One of the most famous Transformer-based mod-
els is BERT (Devlin et al., 2019). It became a
must-have baseline and inspired dozens of studies
probing it for various kinds of linguistic informa-
tion (Rogers et al., 2020b).

We conduct a systematic case study of fine-
tuning BERT on GLUE tasks (Wang et al., 2018)
from the perspective of the lottery ticket hypothesis
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(Frankle and Carbin, 2019). We experiment with
and compare magnitude-based weight pruning and
importance-based pruning of BERT self-attention
heads (Michel et al., 2019), which we extend to
multi-layer perceptrons (MLPs) in BERT.

With both techniques, we find the “good” subnet-
works that achieve 90% of full model performance,
and perform considerably better than similarly-
sized subnetworks sampled from other parts of the
model. However, in many cases even the “bad”
subnetworks can be re-initialized to the pre-trained
BERT weights and fine-tuned separately to achieve
strong performance. We also find that the “good”
networks are unstable across random initializations
at fine-tuning, and their self-attention heads do not
necessarily encode meaningful linguistic patterns.

2 Related Work

Multiple studies of BERT concluded that it is con-
siderably overparametrized. In particular, it is pos-
sible to ablate elements of its architecture without
loss in performance or even with slight gains (Ko-
valeva et al., 2019; Michel et al., 2019; Voita et al.,
2019). This explains the success of multiple BERT
compression studies (Sanh et al., 2019; Jiao et al.,
2019; McCarley, 2019; Lan et al., 2020).

While NLP focused on building larger Trans-
formers, the computer vision community was ex-
ploring the Lottery Ticket Hypothesis (LTH: Fran-
kle and Carbin, 2019; Lee et al., 2018; Zhou
et al., 2019). It is formulated as follows: “dense,
randomly-initialized, feed-forward networks con-
tain subnetworks (winning tickets) that — when
trained in isolation — reach test accuracy compa-
rable to the original network in a similar number
of iterations” (Frankle and Carbin, 2019). The
“winning tickets” generalize across vision datasets
(Morcos et al., 2019), and exist both in LSTM and
Transformer models for NLP (Yu et al., 2020).
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Task Dataset Train Dev  Metric
CoLA  Corpus of Linguistic Acceptability Judgements (Warstadt et al., 2019) 10K 1K Matthews
SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) 67K 872 accuracy
MRPC  Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005) 4k n/a accuracy
STS-B  Semantic Textual Similarity Benchmark (Cer et al., 2017) 7K 1.5K  Pearson
QQP Quora Question Pairs' (Wang et al., 2018) 400K n/a accuracy
MNLI  The Multi-Genre NLI Corpus (matched) (Williams et al., 2017) 393K 20K  accuracy
QNLI Question NLI (Rajpurkar et al., 2016; Wang et al., 2018) 108K 11K  accuracy
RTE Recognizing Textual Entailment (Dagan et al., 2005; Haim et al., 2006; 2.7K  n/a accuracy
Giampiccolo et al., 2007; Bentivogli et al., 2009)
WNLI  Winograd NLI (Levesque et al., 2012) 706 n/a accuracy

Table 1: GLUE tasks (Wang et al., 2018), dataset sizes and the metrics reported in this study

However, so far LTH work focused on the “win-
ning” random initializations. In case of BERT,
there is a large pre-trained language model, used
in conjunction with a randomly initialized task-
specific classifier; this paper and concurrent work
by Chen et al. (2020) are the first to explore LTH
in this context. The two papers provide comple-
mentary results for magnitude pruning, but we also
study structured pruning, posing the question of
whether “good” subnetworks can be used as an
tool to understand how BERT works. Another con-
temporaneous study by Gordon et al. (2020) also
explores magnitude pruning, showing that BERT
pruned before fine-tuning still reaches performance
similar to the full model.

Ideally, the pre-trained weights would provide
transferable linguistic knowledge, fine-tuned only
to learn a given task. But we do not know what
knowledge actually gets used for inference, ex-
cept that BERT is as prone as other models to rely
on dataset biases (McCoy et al., 2019b; Rogers
et al., 2020a; Jin et al., 2020; Niven and Kao, 2019;
Zellers et al., 2019). At the same time, there is vast
literature on probing BERT architecture blocks for
different linguistic properties (Rogers et al., 2020b).
If there are “good” subnetworks, then studying
their properties might explain how BERT works.

3 Methodology

All experiments in this study are done on the
“BERT-base lowercase” model from the Transform-
ers library (Wolf et al., 2020). It is fine-tuned® on 9
GLUE tasks, and evaluated with the metrics shown
in Table 1. All evaluation is done on the dev sets, as
the test sets are not publicly distributed. For each
experiment we test 5 random seeds.

2All experiments were performed with 8 RTX 2080 TI
GPUs, 128 Gb of RAM, 2x CPU Intel(R) Xeon(R) CPU E5-

2630 v4 @ 2.20GHz. Code repository: https://github.
com/sali-prasanna/bert-experiments.

3.1 BERT Architecture

BERT is fundamentally a stack of Transformer en-
coder layers (Vaswani et al., 2017). All layers
have identical structure: a multi-head self-attention
(MHALt) block followed by an MLP, with residual
connections around each.

MHALtt consists of N independently
parametrized heads. An attention head h in

layer [ is parametrized by W,Eh’l), q(h’l), v(h’l) €

Rnxd, Wo(h’l) € R (), is typically set to
d/Np. Given n d-dimensional input vectors
X = I1,T9,..Ly € R?, MHALt is the sum of the

output of each individual head applied to input x:

Np,
1 1
MHAt! )(X) = ;Att;;}s}z,l)7W(§h,l)7w1(]h,l)’W(Eh.l) (x)

The MLP in layer [ consists of two feed-forward
layers. It is applied separately to n d-dimensional
vectors z € R? coming from the attention sub-
layer. Dropout (Srivastava et al., 2014) is used for
regularization. Then inputs of the MLP are added
to its outputs through a residual connection.

3.2 Magnitude Pruning

For magnitude pruning, we fine-tune BERT on each
task and iteratively prune 10% of the lowest magni-
tude weights across the entire model (excluding the
embeddings, since this work focuses on BERT’s
body weights). We check the dev set score in each
iteration and keep pruning for as long as the per-
formance remains above 90% of the full fine-tuned
model’s performance. Our methodology and re-
sults are complementary to those by Chen et al.
(2020), who perform iterative magnitude pruning
while fine-tuning the model to find the mask.

3.3 Structured Pruning

We study structured pruning of BERT architecture
blocks, masking them under the constraint that at
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(a) M-pruning: each cell gives the percentage of surviving
weights, and std across 5 random seeds.

(b) S-pruning: each cell gives the average number of random
seeds in which a given head/MLP survived and std.

Figure 1: The “good” subnetworks for QNLI: self-attention heads (top, 12 x 12 heatmaps) and MLPs (bottom,

1x12 heatmaps), pruned together. Earlier layers start at 0.

least 90% of full model performance is retained.
Combinatorial search to find such masks is imprac-
tical, and Michel et al. (2019) estimate the impor-
tance of attention heads as the expected sensitivity
to the mask variable £(71):

oL (x)
FEMD)

I}(thZ) =Fx ‘

where z is a sample from the data distribution X
and L(z) is the loss of the network outputs on that
sample. We extend this approach to MLPs, with
the mask variable v/(!):

OL(x)
I’SYZL;p = Esnx ‘W
If I}(Zh,l) and Ir(é)lp are high, they have a large

effect on the model output. Absolute values are
calculated to avoid highly positive contributions
nullifying highly negative contributions.

In practice, calculating [ ,(Lh’l) and [ T()i)lp would
involve computing backward pass on the loss
over samples of the evaluation data®>. We follow
Michel et al. in applying the recommendation of
Molchanov et al. (2017) to normalize the impor-
tance scores of the attention heads layer-wise (with
£2 norm) before pruning. To mask the heads, we

3The GLUE dev sets are used as oracles to obtain the best
heads and MLPs for the particular model and task.

use a binary mask variable ) 1f ) = 0, the
head h in layer [ is masked:

Ny,
) _ (hy1) A 4 (D)
MHAtt'" (x) = };5 Attwlgh,l)’W(;h,l)’wéh,l)’w‘gh,l)(X)

Masking MLPs in layer [ is performed similarly
with a masking variable OB

MLP((,?t(Z) = MLPY(2) +2

We compute head and MLP importance scores
in a single backward pass, pruning 10% heads and
one MLP with the smallest scores until the perfor-
mance on the dev set is within 90%. Then we con-
tinue pruning heads alone, and then MLPs alone.
The process continues iteratively for as long as the
pruned model retains over 90% performance of the
full fine-tuned model.

We refer to magnitude and structured pruning as
m-pruning and s-pruning, respectively.

4 BERT Plays the Lottery
4.1 The “Good” Subnetworks

Figure 1 shows the heatmaps for the “good” sub-
networks for QNLI, i.e. the ones that retain 90% of
full model performance after pruning.

For s-pruning, we show the number of random
initializations in which a given head/MLP survived
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the pruning. For m-pruning, we compute the per-
centage of surviving weights in BERT heads and
MLPs in all GLUE tasks (excluding embeddings).
We run each experiment with 5 random initializa-
tions of the task-specific layer (the same ones), and
report averages and standard deviations. See Ap-
pendix A for other GLUE tasks.

Figure 1a shows that in m-pruning, all architec-
ture blocks lose about half the weights (42-57%
weights), but the earlier layers get pruned more.
With s-pruning (Figure 1b), the most important
heads tend to be in the earlier and middle layers,
while the important MLPs are more in the middle.
Note that Liu et al. (2019) also find that the middle
Transformer layers are the most transferable.

In Figure 1b, the heads and MLPs were pruned
together. The overall pattern is similar when they
are pruned separately. While fewer heads (or
MLPs) remain when they are pruned separately
(49% vs 22% for heads, 75% vs 50% for MLPs),
pruning them together is more efficient overall
(i.e., produces smaller subnetworks). Full data is
available in Appendix B. This experiment hints
at considerable interaction between BERT’s self-
attention heads and MLPs: with fewer MLPs avail-
able, the model is forced to rely more on the heads,
raising their importance. This interaction was not
explored in the previous studies (Michel et al.,
2019; Voita et al., 2019; Kovaleva et al., 2019),
and deserves more attention in future work.

4.2 Testing LTH for BERT Fine-tuning:
The Good, the Bad and the Random

LTH predicts that the “good” subnetworks trained
from scratch should match the full network perfor-
mance. We experiment with the following settings:

e “good” subnetworks: the elements selected
from the full model by either technique;

e random subnetworks: the same size as “good”
subnetworks, but with elements randomly
sampled from the full model;

e “bad” subnetworks: the elements sampled
from those that did not survive the pruning,
plus a random sample of the remaining ele-
ments so as to match the size of the “good”
subnetworks.

For both pruning methods, we evaluate the sub-
networks (a) after pruning, (b) after retraining the
same subnetwork. The model is re-initialized to
pre-trained weights (except embeddings), and the
task-specific layer is initialized with the same ran-

dom seeds that were used to find the given mask.

As mentioned earlier, the evaluation is per-
formed on the GLUE* dev sets, which have also
been used to identify the the “good” subnetworks
originally. These subnetworks were chosen to work
well on this specific data, and the corresponding
“bad” subnetworks were defined only in relation
to the “good” ones. We therefore do not expect
these subnetworks to generalize to other data, and
believe that they would best illustrate what exactly
BERT “learns” in fine-tuning.

Performance of each subnetwork type is shown
in Figure 2.The main LTH prediction is validated:
the “good” subnetworks can be successfully re-
trained alone. Our m-pruning results are consis-
tent with contemporaneous work by Gordon et al.
(2020) and Chen et al. (2020).

We observe the following differences between
the two pruning techniques:

e For 7 out of 9 tasks m-pruning yields con-
siderably higher compression (10-15% more
weights pruned) than s-pruning.

e Although m-pruned subnetworks are smaller,
they mostly reach’ the full network perfor-
mance. For s-pruning, the “good” subnet-
works are mostly slightly behind the full net-
work performance.

e Randomly sampled subnetworks could be ex-
pected to perform better than the “bad”, but
worse than the “good” ones. That is the case
for m-pruning, but for s-pruning they mostly
perform on par with the “good” subnetworks,
suggesting the subset of “good” heads/MLPs
in the random sample suffices to reach the full
“good” subnetwork performance.

Note that our pruned subnetworks are relatively
large with both pruning methods (mostly over 50%
of the full model). For s-pruning, we also look
at “super-survivors”: much smaller subnetworks
consisting only of the heads and MLPs that con-
sistently survived across all seeds for a given task.
For most tasks, these subnetworks contained only
about 10-26% of the full model weights, but lost
only about 10 performance points on average. See
Appendix E for the details for this experiment.

“The results for WNLI are unreliable: this dataset has
similar sentences with opposite labels in train and dev data,
and in s-pruning the whole model gets pruned away. See
Appendix A for discussion of that.

SFor convenience, Figure 2 shows the performance of the
full model minus one standard deviation — the success criterion
for the subnetwork also used by Chen et al. (2020).
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Figure 2: The “good” and “bad” subnetworks in BERT fine-tuning: performance on GLUE tasks. ‘Pruned’ subnet-

works are only pruned, and ‘retrained’ subnetworks are restored to pretrained weights and fine-tuned. Subfigure
titles indicate the task and percentage of surviving weights. STD values and error bars indicate standard devia-

tion of surviving weights and performance respectively, across 5 fine-tuning runs. See Appendix C for numerical

results, and subsection 4.3 for GLUE baseline discussion.
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Model CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI Average®
Majority class baseline 0.00 0.51 0.68 0.63 0.02 035 051 053 056 042
CBOW 046 0.79 075 0.75 0.70 057 062 071 056 061
BILSTM + GloVe 0.17 0.87 0.77 085 0.71 0.66 077 058 0.56 0.66
BILSTM + ELMO 044 091 0.70 0.88 0.70 068 071 053 056 0.68
‘Bad’ subnetwork (s-pruning) 040 085  0.67 081 0.60 0.80 076 0.58 0.53 0.67
‘Bad’ subnetwork (m-pruning) 0.24  0.81 0.67 0.77 0.08 0.61 0.6 049 049 051
Random init + random s-pruning  0.00  0.78 0.67 0.78 0.14 0.63 059 053 050 052

Table 2: “Bad” BERT subnetworks (the best one is underlined) vs basic baselines (the best one is bolded). The ran-
domly initialized BERT is randomly pruned by importance scores to match the size of s-pruned ‘bad’ subnetwork.

4.3 How Bad are the ‘“Bad” Subnetworks?

Our study — as well as work by Chen et al. (2020)
and Gordon et al. (2020) — provides conclusive
evidence for the existence of “winning tickets”, but
it is intriguing that for most GLUE tasks random
masks in s-pruning perform nearly as well as the
“good” masks - i.e. they could also be said to be
“winning”. In this section we look specifically at
the “bad” subnetworks: since in our setup, we use
the dev set both to find the masks and to test the
model, these parts of the model are the least useful
for that specific data sample, and their trainability
could yield important insights for model analysis.

Table 2 shows the results for the “bad” subnet-
works pruned with both methods and re-fine-tuned,
together with dev set results of three GLUE base-
lines by Wang et al. (2018). The m-pruned ‘bad’
subnetwork is at least 5 points behind the s-pruned
one on 6/9 tasks, and is particularly bad on the cor-
relation tasks (CoLA and STS-B). With respect
to GLUE baselines, the s-pruned “bad” subnet-
work is comparable to BILSTM+ELMO and BiL-
STM+GloVe. Note that there is a lot of variation
between tasks: the ‘bad’ s-pruned subnetwork is
competitive with BILSTM+GloVe in 5/9 tasks, but
it loses by a large margin in 2 more tasks, and wins
in 2 more (see also Figure 2).

The last line of Table 2 presents a variation of
experiment with fine-tuning randomly initialized
BERT by Kovaleva et al. (2019): we randomly ini-
tialize BERT and also apply a randomly s-pruned
mask so as to keep it the same size as the s-pruned
“bad” subnetwork. Clearly, even this model is in
principle trainable (and still beats the majority class
baseline), but on average® it is over 15 points be-
hind the “bad” mask over the pre-trained weights.
This shows that even the worst possible selection of

SGLUE leaderboard uses macro average of metrics to rank
the participating systems. We only consider the metrics in
Table 1 to obtain this average.

pre-trained BERT components for a given task still
contains a lot of useful information. In other words,
some lottery tickets are “winning” and yield the
biggest gain, but all subnetworks have a non-trivial
amount of useful information.

Note that even the random s-pruning of a ran-
domly initialized BERT is slightly better than the
m-pruned “bad” subnetwork. It is not clear what
plays a bigger role: the initialization or the archi-
tecture. Chen et al. (2020) report that pre-trained
weights do not perform as well if shuffled, but they
do perform better than randomly initialized weights.
To test whether the “bad” s-pruned subnetworks
might match the “good” ones with more training,
we trained them for 6 epochs, but on most tasks the
performance went down (see Appendix D).

Finally, BERT is known to sometimes have de-
generate runs (i.e. with final performance much
lower than expected) on smaller datasets (Devlin
et al., 2019). Given the masks found with 5 ran-
dom initializations, we find that standard deviation
of GLUE metrics for both “bad” and “random” s-
pruned subnetworks is over 10 points not only for
the smaller datasets (MRPC, CoLA, STS-B), but
also for MNLI and SST-2 (although on the larger
datasets the standard deviation goes down after
re-fine-tuning). This illustrates the fundamental
cause of degenerate runs: the poor match between
the model and final layer initialization. Since our
“good” subnetworks are specifically selected to be
the best possible match to the specific random seed,
the performance is the most reliable. As for m-
pruning, standard deviation remains low even for
the “bad” and “random” subnetworks in most tasks
except MRPC. See Appendix C for full results.

5 Interpreting BERT’s Subnetworks

In subsection 4.2 we showed that the subnetworks
found by m- and s-pruning behave similarly in fine-
tuning. However, s-pruning has an advantage in
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that the functions of BERT architecture blocks have
been extensively studied (see detailed overview by
Rogers et al. (2020b)). If the better performance
of the “good” subnetworks comes from linguistic
knowledge, they could tell a lot about the reasoning
BERT actually performs at inference time.

5.1 Stability of the ‘“Good” Subnetworks

Random initializations in the task-specific classi-
fier interact with the pre-trained weights, affecting
the performance of fine-tuned BERT (McCoy et al.,
2019a; Dodge et al., 2020). However, if better per-
formance comes from linguistic knowledge, we
would expect the “good” subnetworks to better en-
code this knowledge, and to be relatively stable
across fine-tuning runs for the same task.

We found the opposite. For all tasks, Fleiss’
kappa on head survival across 5 random seeds was
in the range of 0.15-0.32, and Cochran Q test did
not show that the binary mask of head survival
obtained with five random seeds for each tasks were
significantly similar at & = 0.05 (although masks
obtained with some pairs of seeds were). This
means that the “good” subnetworks are unstable,
and depend on the random initialization more than
utility of a certain portion of pre-trained weights
for a particular task.

The distribution of importance scores, shown
in Figure 3, explains why that is the case. At any
given pruning iteration, most heads and MLPs have
a low importance score, and could all be pruned
with about equal success.

Frequency
L - N N
o w o w

v

0.0 0.2 0.4 0.6 0.8 1.0
Importance score

Figure 3: Head importance scores distribution (this ex-
ample shows CoLLA, pruning iteration 1)

5.2 How Linguistic are the “Good”
Subnetworks?

A popular method of studying functions of BERT
architecture blocks is to use probing classifiers for
specific linguistic functions. However, “the fact
that a linguistic pattern is not observed by our prob-
ing classifier does not guarantee that it is not there,

and the observation of a pattern does not tell us
how it is used” (Tenney et al., 2019).

In this study we use a cruder, but more reliable al-
ternative: the types of self-attention patterns, which
Kovaleva et al. (2019) classified as diagonal (atten-
tion to previous/next word), block (uniform atten-
tion over a sentence), vertical (attention to punctua-
tion and special tokens), vertical+diagonal, and het-
erogeneous (everything else) (see Figure 4a). The
fraction of heterogeneous attention can be used as
an upper bound estimate on non-trivial linguistic
information. In other words, these patterns do not
guarantee that a given head has some interpretable
function — only that it could have it.

This analysis is performed by image classifica-
tion on generated attention maps from individual
heads (100 for each GLUE task), for which we use
a small CNN classifier with six layers. The clas-
sifier was trained on the dataset of 400 annotated
attention maps by Kovaleva et al. (2019).

Note that attention heads can be seen as a
weighted sum of linearly transformed input vectors.
Kobayashi et al. (2020) recently showed that the
input vector norms vary considerably, and the in-
puts to the self-attention mechanism can have a dis-
proportionate impact relative to their self-attention
weight. So we consider both the raw attention
maps, and, to assess the true impact of the input in
the weighted sum, the L2-norm of the transformed
input multiplied by the attention weight (for which
we annotated 600 more attention maps with the
same pattern types as Kovaleva et al. (2019)). The
weighted average of Fy scores of the classifier on
annotated data was 0.81 for the raw attention maps,
and 0.74 for the normed attention.

Our results suggest that the super-survivor heads
do not preferentially encode non-trivial linguistic
relations (heterogeneous pattern), in either raw or
normed self-attention (Figure 4b). As compared
to all 144 heads (Figure 4c) the “raw” attention
patterns of super-survivors encode considerably
more block and vertical attention types. Since
norming reduces attention to special tokens, the
proportion of diagonal patterns (i.e. attention to
previous/next tokens) is increased at the cost of
vertical+diagonal pattern. Interestingly, for 3 tasks,
the super-survivor subnetworks still heavily rely on
the vertical pattern even after norming. The vertical
pattern indicates a crucial role of the special tokens,
and it is unclear why it seems to be less important
for MNLI rather than QNLI, MRPC or QQP.
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(a) Reference: typical BERT self-attention patterns by Kovaleva et al. (2019).

Attention Patterns

MRPC  QQP

MNLI  QNLI  RTE SST-2 ColA STS-B

Weight Normed Attention Patterns

MNLI QNLI MRPC QQP SST-2 ColLA STS-B
mmm Vertical + Diagonal mmm Vertical mmm Diagonal
s Block mmm Heterogeneous

(b) Super-survivor heads, fine-tuned
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Figure 4: Attention pattern type distribution

The number of block pattern decreased, and we
hypothesize that they are now classified as heteroge-
neous (as they would be unlikely to look diagonal).
But even with the normed attention, the utility of
super-survivor heads cannot be attributed only to
their linguistic functions (especially given that the
fraction of heterogeneous patterns is only a rough
upper bound). The Pearson’s correlation between
heads being super-survivors and their having het-
erogeneous attention patterns is 0.015 for the raw,
and 0.025 for the normed attention. Many “impor-
tant” heads have diagonal attention patterns, which
seems redundant.

We conducted the same analysis for the attention
patterns in pre-trained vs. fine-tuned BERT for
both super-survivors and all heads, and found them
to not change considerably after fine-tuning, which
is consistent with findings by Kovaleva et al. (2019).
Full data is available in Appendix F.

Note that this result does not exclude the pos-
sibility that linguistic information is encoded in
certain combinations of BERT elements. How-
ever, to date most BERT analysis studies focused
on the functions of individual components (Voita
et al., 2019; Htut et al., 2019; Clark et al., 2019;

Lin et al., 2019; Vig and Belinkov, 2019; Hewitt
and Manning, 2019; Tenney et al., 2019, see also
the overview by Rogers et al. (2020b)), and this
evidence points to the necessity of looking at their
interactions. It also adds to the ongoing discussion
of interpretability of self-attention (Jain and Wal-
lace, 2019; Serrano and Smith, 2019; Wiegreffe
and Pinter, 2019; Brunner et al., 2020).

Once again, heterogenerous pattern counts are
only a crude upper bound estimate on potentially
interpretable patterns. More sophisticated alter-
natives should be explored in future work. For
instance, the recent information-theoretic probing
by minimum description length (Voita and Titov,
2020) avoids the problem of false positives with
traditional probing classifiers.

5.3 Information Shared Between Tasks

While the “good” subnetworks are not stable, the
overlaps between the “good” subnetworks may still
be used to characterize the tasks themselves. We
leave detailed exploration to future work, but as a
brief illustration, Figure 5 shows pairwise overlaps
in the “good” subnetworks for the GLUE tasks.

The overlaps are not particularly large, but still
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Figure 5: Overlaps in BERT’s “good” subnetworks be-
tween GLUE tasks: self-attention heads.

more than what we would expect if the heads were
completely independent (e.g. MRPC and QNLI
share over a half of their “good” subnetworks).
Both heads and MLPs show a similar pattern. Full
data for full and super-survivor “good” subnet-
works is available in Appendix G.

Given our results in subsection 5.2, the overlaps
in the “good” subnetworks are not explainable by
two tasks’ relying on the same linguistic patterns
in individual self-attention heads. They also do
not seem to depend on the type of the task. For
instance, consider the fact that two tasks target-
ing paraphrases (MRPC and QQP) have less in
common than MRPC and MNLI. Alternatively, the
overlaps may indicate shared heuristics, or patterns
somehow encoded in combinations of BERT ele-
ments. This remains to be explored in future work.

6 Discussion

This study confirms the main prediction of LTH
for pre-trained BERT weights for both m- and
s-pruning. An unexpected finding is that with s-
pruning, the “random” subnetworks are still almost
as good as the “good” ones, and even the “worst”
ones perform on par with a strong baseline. This
suggests that the weights that do not survive prun-
ing are not just “inactive” (Zhang et al., 2019).

An obvious, but very difficult question that arises
from this finding is whether the “bad” subnetworks

do well because even they contain some linguistic
knowledge, or just because GLUE tasks are overall
easy and could be learned even by random BERT
(Kovaleva et al., 2019), or even any sufficiently
large model. Given that we did not find even the
“good” subnetworks to be stable, or preferentially
containing the heads that could have interpretable
linguistic functions, the latter seems more likely.

Furthermore, should we perhaps be asking the
same question with respect to not only subnetworks,
but also full models, such as BERT itself and all
the follow-up Transformers? There is a trend to
automatically credit any new state-of-the-art model
with with better knowledge of language. However,
what if that is not the case, and the success of pre-
training is rather due to the flatter and wider op-
tima in the optimization surface (Hao et al., 2019)?
Can similar loss landscapes be obtained from other,
non-linguistic pre-training tasks? There are initial
results pointing in that direction: Papadimitriou
and Jurafsky (2020) report that even training on
MIDI music is helpful for transfer learning for LM
task with LSTMs.

7 Conclusion

This study systematically tested the lottery ticket
hypothesis in BERT fine-tuning with two prun-
ing methods: magnitude-based weight pruning and
importance-based pruning of BERT self-attention
heads and MLPs. For both methods, we find that
the pruned “good” subnetworks alone reach the per-
formance comparable with the full model, while
the “bad” ones do not. However, for structured
pruning, even the “bad” subnetworks can be fine-
tuned separately to reach fairly strong performance.
The “good” subnetworks are not stable across fine-
tuning runs, and their success is not attributable
exclusively to non-trivial linguistic patterns in in-
dividual self-attention heads. This suggests that
most of pre-trained BERT is potentially useful in
fine-tuning, and its success could have more to do
with optimization surfaces rather than specific bits
of linguistic knowledge.

Carbon Impact Statement. This work contributed
115.644 kg of CO2.4 to the atmosphere and used 249.068 kWh
of electricity, having a NLD-specific social cost of carbon of
$-0.14 ($-0.24, $-0.04). The social cost of carbon uses models
from (Ricke et al., 2018) and this statement and emissions
information was generated with experiment-impact-tracker
(Henderson et al., 2020).
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A “Good” Subnetworks in BERT Fine-tuned on GLUE Tasks

Each figure in this section shows the “good” subnet-
work of heads and layers that survived the pruning
process described in section 3. Each task was run
with 5 different random seeds. The top number
in each cell indicates how likely a given head or
MLP was to survive pruning, with 1.0 indicating
that it survived on every run. The bottom number
indicates the standard deviation across runs.

The figures in this appendix show that each task has
a varying number of heads and layers that survive
pruning on all fine-tuning runs, while some heads
and layers were only “picked up” by some random
seeds. Note also that in addition to the architecture

Layer

0 1 2 3 a 5 6 7 8 9 10 11
0.50
0.00

(a) M-pruning

elements that survive across many runs, there are
also some that are useful for over half of the tasks,
as shown in Figure 15, and some always survive
the pruning.

Visualizing the “good” subnetwork illustrates the
core problem with WNLI, the most difficult task
of GLUE. Figure 14 shows that each run is com-
pletely different, indicating that BERT fails to find
any consistent pattern between the task and the
information in the available pre-trained weights.
WNLI is described as “somewhat adversarial” by
Wang et al. (2018) because it has similar sentences
in train and dev sets with opposite labels.

Layer

0 1
0.20
0.45

(b) S-pruning

Figure 6: MNLI
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Layer

(a) M-pruning (b) S-pruning

Figure 7: QNLI
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Layer

(a) M-pruning (b) S-pruning

Figure 8: RTE
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Layer

(a) M-pruning (b) S-pruning

Figure 9: MRPC
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Layer

(a) M-pruning (b) S-pruning

Figure 10: QQP
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Layer

(a) M-pruning (b) S-pruning

Figure 11: SST-2

Layer
Layer

(a) M-pruning (b) S-pruning

Figure 12: CoLA
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Layer
Layer

(a) M-pruning

Figure 13: STS-B

(b) S-pruning

0 1 2 3 4 5 6 7 8 9 10 11
0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
1 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
3 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
4 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
. = s 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
:
3 - 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
6 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
7 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
8 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
9 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
10 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
11 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
o 1 2 3 4 5 6 7 8 9 10 11
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) M-pruning

Figure 14: WNLI
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B Iterative Pruning Modes

We conducted additional experiments with the fol- tance score (subsection 3.3).
lowing settings for iterative pruning based on im-

portance scores: e Heads and MLPs: we compute head (sub-

section 3.3) and MLP (subsection 3.3) impor-
tance scores in a single backward pass, prun-
ing 10% heads and one MLP with the smallest
scores until the performance on the dev set is

e Heads only: in each iteration, we mask as
many of the unmasked heads with the lowest
importance scores as we can (144 heads in the

full BERT-base model). within 90%. Then we continue pruning heads

alone, and then MLPs alone. This strategy

e MLPs only: we iteratively mask one of the results in a larger number of total components
remaining MLPs that has the smallest impor- pruned within our performance threshold.

0 1 2 3 a4 5 6 7 8 9 10 11

Layer

(a) Surviving heads (masking heads only) (b) Surviving heads (masking heads and MLPs)

0 1 2 3 4 5 6 7 8 9 10 11

4.00 2.80

1.00 1.48

(c) Surviving MLPs (masking MLPs only)

0 1 2 3 4 5 6 7 8 9 10 11
5.00 3.60 4.80 5.00
1.58 1.52 1.64 1.22

(d) Surviving MLPs (masking heads and MLPs)

Figure 15: The “good” subnetworks: self-attention heads and MLPs that survive pruning. Each cell gives the
average number of GLUE tasks in which a given head/MLP survived, and the standard deviation across 5 fine-

tuning initializations.
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D Longer Fine-tuning of “Bad” s-pruned Subnetworks

Epoch CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI Avg

3 0422 0873 071 0.832 0.651 0.805 0.764 0.579 0.498 0.6815
4 0.423  0.859 0.663 0.828 0.652 0.804 0.762 0.587 0.554 0.6813
5 0432 0.862 0.665 0.831 0.668 0.801 0.752 0590 0.523 0.6804
6 0425 0.867 0.655 0.830 0.667 0.800 0.753 0.594 0.521 0.6791

Figure 16: The mean of GLUE tasks metrics evaluated on five seeds at different epochs (the best one is bolded).
*Slight divergence in metrics from the previously reported ones due to this being an new fine-tuning run.

E Performance of the “Super Survivor’’ Subnetworks

In this experiment, we explore three settings:

o o
o ©

I
IS

Accuracy

Accuracy

0.4

Matthews correlation

“good” subnetworks: the subnetworks con-
sisting only of “super-survivors”: the self-
attention heads and MLPs that survived in all
random seeds, shown in Appendix A. These
subnetworks are much smaller than the pruned
subnetworks discussed in subsection 4.2 (10-
30% vs 50-70% of the full model);

“bad” subnetworks: the subnetworks the
same size as the super-survivor subnetworks,
but selected from heads and MLPs the least
likely to survive importance pruning;

e random subnetworks: same size as super-
survivor subnetworks, but selected from el-
ements that were neither super-survivors, nor
the ones in the “bad” subnetworks.

The striking conclusion is that on 6 out of 9 tasks
the bad and random subnetworks behaved nearly as
well as the “good” ones, suggesting that the “super-
survivor” self-attention heads and MLPs did not
survive importance pruning because of their encod-
ing some unique linguistic information necessary
for solving the GLUE tasks.
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Figure 17: The performance of “super survivor” subnetworks in BERT fine-tuning: performance on GLUE tasks
(error bars indicate standard deviation across 5 fine-tuning runs). The size of the super-survivor subnetwork as %
of full model weights is shown next to the task names.
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F Attention Pattern Type Distribution

We use two separately trained CNN classifiers to
analyze the BERT’s self-attention maps, both “raw”
head outputs and weight-normed attention, follow-
ing Kobayashi et al. (2020). For the former, we use
400 annotated maps by Kovaleva et al. (2019), and
for the latter we additionally annotate 600 more
maps.

We run the classifiers on pre-trained and fine-tuned

Attention Patterns

| — [ | [ | [ | -

I - ] I o I I —
N | o

| I N I i N

11::111

MNLI QNLI RTE MRPC QQP SST-2 ColLA STS-B

Weight Normed Attention Patterns

I i i I
MNLI QNLI  RTE MRPC QQP SST-2 ColA STS-B

mmm Vertical + Diagonal mmm Vertical mmm Diagonal
mem Block mmm Heterogeneous

(a) Super-survivor heads, fine-tuned

Attention Patterns

SST-2 ColA STS-B

MNLI' QNLI RTE MRPC QQP

Weight Normed Attention Patterns

MNLI QNLI  RTE MRPC QQP SST-2 ColA STS-B

mmm Vertical + Diagonal s Vertical mmm Diagonal
mmm Block mmm Heterogeneous

(c) All heads, fine-tuned

BERT, both the full model and the model pruned
by the “super-survivor” mask (only the heads and
MLPs that survived across GLUE tasks). For each
experiment, we report the fraction of attention pat-
terns estimated from a hundred dev-set samples for
each task across five random seeds.

See Figure 4a for attention types illustration.

Attention Patterns

=
z NN
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(b) Super-survivor heads, pre-trained
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(d) All heads, pre-trained

Figure 18: Attention pattern distribution in all BERT self-attention heads and the “super-survivor” heads.
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G How Task-independent are the “Good” Subnetworks?

The parts of the “good” subnetworks that are only
relevant for some specific tasks, but consistently
survive across fine-tuning runs for that task, should
encode the information useful for that task, even
if it is not deeply linguistic. Therefore, the degree
to which the “good” subnetworks overlap across
tasks may be a useful way to characterize the tasks
themselves.

62.40
10.24

58.40
11.33

57.60
10.43

55.40
18.85

Task

48.80
22.03

49.60 20 67.00
13.05 23 15.65

53.40 36.20 76.80
14.94 9.73 7.98

2320 19.00 19.00 1760 17.60 14.80 13.40 1620  28.80
WNLIY 5188 4249 4249 3935 39.35 33.09 29.96 36.22 64.40

ColLA  MNLI  MRPC  QNLI  QQP RTE  SST-2 STS-B  WNLI

Task

(a) Heads shared between tasks

17.00

Task

11.00

1.00 19.00

RTE  SST-2  STS-B  WNLI

Task

(c) Super-survivor Heads shared between tasks

Figure 19 shows pairwise comparisons between all
GLUE tasks with respect to the number of shared
heads and MLPs in two conditions: the “good” sub-
networks found by structured importance pruning
that were described in subsection 4.1, and super-
survivors (the heads/MLPs that survived in all ran-
dom seeds).

Task

(b) MLPs shared between tasks

3.00 3.00
RTE 0.00 1.00 0.00 2.00
SST-2 1.00 1.00 1.00 0.00 2.00

WNLI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CoLA  MNLI  MRPC  QNLI  QQP RTE  SST-2 STS-B  WNLI

Task

(d) Super-survivor MLPs shared between tasks

Figure 19: The “good” subnetwork: The diagonal represents the BERT architecture components that survive
pruning for a given task and remaining elements represent the common surviving components across GLUE tasks.
Each cell gives the average number of heads (out of 144) or layers (out of 12), together with standard deviation

across 5 random initializations (for (a) and (b)).
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