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Abstract

Semi-supervision is a promising paradigm for
Bilingual Lexicon Induction (BLI) with lim-
ited annotations. However, previous semi-
supervised methods do not fully utilize the
knowledge hidden in annotated and non-
annotated data, which hinders further improve-
ment of their performance. In this paper, we
propose a new semi-supervised BLI frame-
work to encourage the interaction between the
supervised signal and unsupervised alignment.
We design two message-passing mechanisms
to transfer knowledge between annotated and
non-annotated data, named prior optimal trans-
port and bi-directional lexicon update respec-
tively. Then, we perform semi-supervised
learning based on a cyclic or a parallel pa-
rameter feeding routine to update our models.
Our framework is a general framework that
can incorporate any supervised and unsuper-
vised BLI methods based on optimal transport.
Experimental results on MUSE and VecMap
datasets show significant improvement of our
models. Ablation study also proves that the
two-way interaction between the supervised
signal and unsupervised alignment accounts
for the gain of the overall performance. Re-
sults on distant language pairs further illustrate
the advantage and robustness of our proposed
method.

1 Introduction

Bilingual Lexicon Induction (BLI) is of huge inter-
est to the research frontier. BLI methods learn
cross-lingual word embeddings from separately
trained monolingual embeddings. BLI is believed
to be a promising way to transfer semantic informa-
tion between different languages, and spawns lots
of NLP applications like machine translation (Lam-
ple et al., 2018b; Artetxe et al., 2018b), Part Of
Speech (POS) tagging (Gaddy et al., 2016), parsing

"Yong Zhang is the corresponding author.

(Xiao and Guo, 2014), and document classification
(Klementiev et al., 2012).

The key step of BLI is to learn a transfor-
mation between monolingual word embedding
spaces (Ruder et al., 2019), which could be fur-
ther used for translation retrieval or cross-lingual
analogy tasks. However, it is hard to obtain the
high quality transformation with low supervision
signals, i.e. with limited annotated lexicon. Thus,
some semi-supervised BLI methods (Artetxe et al.,
2017; Patra et al., 2019) are proposed to make use
of annotated and non-annotated data. Artetxe et al.
(2017) bootstrapped the supervised lexicon to en-
hance the supervision but ignored the knowledge in
non-annotated data. Meanwhile, Patra et al. (2019)
combined the unsupervised BLI loss that captured
the structural similarity in word embeddings (Lam-
ple et al., 2018a) with the supervised loss (Joulin
et al., 2018). However, this loss combination still
performed poorly since the bad supervised opti-
mization under limited annotations, see the Exper-
iment part for details. As a result, existing semi-
supervised BLI methods suffer from low effective-
ness (Artetxe et al., 2017) or low robustness (Patra
et al., 2019).

In this work, we focus on designing a new semi-
supervised BLI method to make full use of both
annotated and non-annotated data. We propose
a novel framework with two different strategies,
which exceeds the previous separate (Artetxe et al.,
2017; Patra et al., 2019) semi-supervised methods
by emphasizing the two-way interaction between
the supervised signal and unsupervised alignment.
In this framework, supervised training tries to align
the parallel lexicon and unsupervised training can
exploit the structure similarity between monolin-
gual embedding spaces. The foundation of two-
way interaction is in two carefully designed mes-
sage passing mechanisms, see Section 3.1 and 3.2.
Two-way interaction enables semi-supervised BLI
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to guide the exploitation of structural similarity by
unsupervised procedure (Grave et al., 2019) and
extend insufficient lexicon for supervised proce-
dure (Joulin et al., 2018) simultaneously, see Fig-
ure 1. In this paper, we only consider the unsu-
pervised BLI methods based on Optimal Transport
(OT) (Grave et al., 2019; Alaux et al., 2019; Huang
etal., 2019; Alvarez-Melis et al., 2018), which have
achieved impressive results on BLI task.

More specifically, the contributions of this paper

are listed below.

e We propose the two-way interaction between
the supervised signal and unsupervised align-
ment. It consists of two message passing
mechanisms, Prior Optimal Transport (POT)
and Bidirectional Lexicon Update (BLU).
POT enables the OT-based unsupervised BLI
approach to be guided by any prior BLI trans-
formation, i.e. transfers what is learned by su-
pervised BLI method to the unsupervised BLI
method. BLU employs the alignment results
in bi-directional retrieval to enlarge the anno-
tated data, and thus enhances the supervised
training by unsupervised BLI transformation.

e We propose two strategies of semi-supervised
BLI framework based on POT and BLU,
named by Cyclic Semi-Supervision (CSS) and
Parallel Semi-Supervision (PSS). They are
recognized by the cyclic and parallel parame-
ter feeding routines, respectively, see Figure 1.
Notably, CSS and PSS are universal to admit
any supervised BLI methods and OT-based
unsupervised BLI methods.

e Extensive experiments on two popular
datasets show that CSS and PSS exceed all
previous supervised, unsupervised, and semi-
supervised approaches and are suitable to dif-
ferent scenarios. Ablation study of CSS and
PSS demonstrates that the two-way interac-
tion (POT and BLU) is the key to improve
the performance. Results on distant language
pairs show the advantage and robustness of
our method.

2 Background

In this section, we describe the basic formula-
tion of related supervised and unsupervised BLI
methods. We define two embedding matrices
X,Y € R™? where n is the number of words
and d is the dimension of the word embedding.

The key to supervised BLI is the parallel lexi-

con between two languages, say word x; in X is
translated to word y; in Y. Mikolov et al. (2013)
suggested regarding supervised BLI as a regres-
sion problem aligning word embeddings by a linear
transformation Q*.

Q" =argmind_[X:Q-Yi[3 (D
QERdXd i
Artetxe et al. (2016) introduced the orthogonal con-
straint on (). Therefore, Problem (1) has a closed-
form solution Q* = UV'T, where U,V are de-
fined by the SVD decomposition YT X = USV T,
Joulin et al. (2018) proposed to replace the 2-norm
in Problem (1) by Relaxed Cross-domain Similarity
Local Scaling (RCSLS) loss to mitigate the hub-
ness problem, which is formulated in Equation (2).

RCSLS(7:Q, ;) = — 2Q "z y;

1 T.T
+% Z Q xy
yENy (2:Q) 2

1 T.T
+% Z Q x yj
zQENX (y5)

where Ny (y) represents the set which consists of
the k nearest neighbors of y in the point cloud X,
so as Ny (2;Q).

For unsupervised BLI, embeddings in X and Y
are totally out of order. As a result, unsupervised
BLI methods need to model an unknown permuta-
tion matrix P € P, = {0, 1}"*"

: 2

ocdMn_, 1XQ = PYl[x 3)
where Oy is the set of orthogonal matrices. Prob-
lem (3) could be solved by iteratively minimizing
@ and P. More specifically, Grave et al. (2019)
considered random samples X,Y € R™*¢ from
X,Y in a stochastic optimization scheme. Mini-
mizing P directly is hard. The key to unsupervised
methods is how to solve P approximately, see Sec-
tion 6. OT based methods solve P by optimal
transport (Zhang et al., 2017; Grave et al., 2019;
Alaux et al., 2019; Huang et al., 2019). Grave et al.
(2019) and Zhang et al. (2017) proposed to solve
the Wasserstein problem between the two distribu-
tions supported on X @Q and Y, respectively.

W2(XQ,Y) = mi P,iD;; 4

2( Q7 ) gg%; 17479 ()

where D;; is the cost between x;() and y;, such
as 2-norm, RCSLS loss, or other costs. P € II =
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Figure 1: Ilustration for Cyclic Semi-Supervision and Parallel Semi-Supervision

{P e RY*™|>2, Pij = >2; Pj = 1} is the trans-
port plan (Peyré et al., 2019). OT related metrics
can be solved by the entropy regularized Sinkhorn
algorithm (Cuturi, 2013).

W3(XQ,Y) =min > P;Dyj +cH(P) (5)
,J

To summarize, the foundation of supervised BLI
is the annotated parallel lexicon for training, and
the critical step of OT-based unsupervised BLI is
the solution of transport plan P.

3 Message Passing in BLI

In this section, we present two message passing
mechanisms for semi-supervised framework, in-
cluding POT and BLU. POT is proposed to en-
hance the unsupervised BLI by the knowledge
passed from the supervised BLI. Meanwhile BLU
enhances the supervised BLI by the additional lex-
icon based on the unsupervised retrieval results.
Therefore, POT and BLU form the two-way inter-
action between the supervised signal and unsuper-
vised alignment.

3.1 Prior Optimal Transport

We present POT to strengthen the stochastic opti-
mization in unsupervised BLI with prior informa-
tion from supervised BLI. More specifically, POT
is designed to guide the original OT solution of
P, see Problem (4). POT can replace the original
OT problems in unsupervised BLI models such
as (Grave et al., 2019). In this way, we enable the
transformation (), trained in supervised BLI to
enhance the unsupervised BLI.

Given Qg learned from any supervised BLI
and random word embedding samples {z;} and
{y;}, we compute the cost matrix C' between trans-
formed source embeddings and target embeddings.
In this work, we choose RCSLS as the specific

formulation of C;;
Cij = ROSLS(2,Qsup, ;). ©)

Based on this cost function, we propose to use
the Boltzmann Distribution, i.e. softmax function
with temperature to construct a prior transport plan
I

o—Cis/T

> 1<k<n e Cu/T
I';; represents the probability that the i-th word in
X is a translation of the j-th word in Y. Tempera-
ture 1" controls the significance of translation in I'.
I', induced from Q) 4y, assigns each pair of words
with a smaller cost in C' a higher probability of
forming a lexicon.

Instead of considering Problem (4), we consider
the POT regularized by the Kullback-Leibler (KL)
divergence between I" and P.

Iy = )

POT(XQ,Y) = min(D, P) + eKL(P|T), )

where (D, P) = >~ ; Pi;D;; is the matrix inner
product. We note that KL regularization in POT
problem is totally different from the aforemen-
tioned entropic regularization (5). For entropy reg-
ularized OT, the regularization coefficient € is ex-
pected to be as small as possible to approximate the
original OT solution. However, for POT discussed
in (8), the regularization coefficient € controls the
interpolation of OT transport plan that minimizes
Problem (4) and prior transport plan I'. Therefore,
€ does not need to be as small as possible. Instead,
it is a proper number to coordinate the effect from
prior supervised transformation Q) s.

The key to solving Problem (8) is to decompose
the KL divergence into entropic term and linear
term. Therefore, Problem (8) is reduced to

min(D — elogT’, P) + eH(P). )
Pell
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By treating D — elog I as the I'-prior cost ma-
trix D(e,I"), Problem (8) could also be solved by
Sinkhorn algorithm. Again, since POT does not
require € to be closed to zero, the solution of POT
Problem (8) will not suffer from numerical insta-
bility problems (Peyré et al., 2019).

3.2 Bi-directional Lexicon Update

As stated in Section 2, the key to supervised BLI
is its parallel lexicon for training. Therefore, to
enhance the supervised BLI, we propose BLU to
extend the parallel lexicon by the structural similar-
ity of word embeddings exploited in unsupervised
BLI. To distinguish from unsupervised notations
in Section 3.1, let S, € R™*? be the parallel
word embedding matrices for source and target lan-
guages respectively. The ¢-th row s; of S and ¢; of
T form a translation pair in the annotated lexicon.
BLU selects the additional lexicon S’, 7" € R!*¢
with high credit scores to extend S and 7T'. Let
S*=8®S and T* = T ® T’ be the extended lex-
icon, where @ denotes the concatenation operation
along columns between two matrices.

Given the forward and backward transformations

unsup ANd Q) ynsup between source language and
target language from unsupervised BLI. BLU de-
fines the 5" and 7" by Qunsup and Q.. ,, respec-
tively in four steps:
(1) Compute the forward and backward dis-
tance matrices. Forward distance matrix is
defined between transformed source embeddings
and target embeddings, while backward distance
matrix % is defined between source embeddings
and backward transformed target embeddings.
(2) Generate forward and backward transla-
tion pairs. Let B = {(¢,7)|j = argming D}
and = {(i,j)|i = argming Dy;} be the
translation pair sets. Then take the intersection
B = B N % as the candidate additional lexicon.
(3) Compute the credit score C'S for each trans-
lation pair. Firstly, we define the forward and back-
ward credit scores for a pair (7, j) € B. Let ﬁ(z)
be the set of target word indices k, 8(1) ={k|
k # j and k is among top K + 1 elements of
—D;.}, so as C(j). The forward credit score is
defined by CS;; = 3. = Din/K — Dy;, and
o j keC (i) ij>
CS;; is similarly defined. Then we define credit
score C'S;;j for (i, j) € Bby CS;j = C@ij —1—(%',5.
(4) Select additional lexicon by credit score. The
additional lexicon is selected in descending order

of the C'S for each translation pair (4, 7).

Based on the steps mentioned above, we append
the annotated lexicon with the additional lexicon
that contains high credit translation pairs.

This message passing mechanism is related to
the bootstrap routine in (Artetxe et al., 2018a).
However, we select the credible translation pairs
from the intersection, rather than union, of the for-
ward and backward set of translation pairs. In this
way, we guarantee the high quality of the additional
lexicon.

4 Semi-Supervision with Two-way
Interaction

In the previous section, we have presented two
message passing mechanisms to enhance super-
vised BLI and OT-based unsupervised BLI by
prior transformation Qunsup and Qgyp, respec-
tively. Moreover, recent state-of-the-art (SOTA)
supervised(Sup) and unsupervised(UnSup) ap-
proaches are all based on stochastic optimization
rather than the closed-form solution. This means
that all SOTA Sup and Un.Sup approaches can be
considered as a module that operates on the feed-in
parameter (). Therefore, we propose two different
strategies for semi-supervision that emphasize the
two-way interaction between the supervised signal
and unsupervised alignment based on the message
passing mechanisms, see Figure 1. All SOTA Sup
and OT-based Un.Sup methods can be plugged into
the proposed framework seamlessly.

4.1 Cyclic Semi-Supervision

The first proposed semi-supervised BLI strategy is
CSS, see Figure 1 (a). CSS feeds the parameter ()
into Sup and UnSwup iteratively in a cyclic param-
eter feeding routine. Cyclic parameter feeding is a
“hard” way to share the parameters and is no more
than Patra et al. (2019) itself. Besides parameter
feeding, we propose to use the message passing
mechanisms BLU and POT to strengthen the Sup
and UnSup. However, there is no convergence
guarantee for this optimization scheme. As a result,
it may suffer from limited performance when the
BLI task is hard, as will be detailed in Section 5.

4.2 Parallel Semi-Supervision

The second strategy is PSS, see Figure 1 (b), where
Sup and UnSup are performed in parallel. The in-
formation between Sup and UnSup is only passed
by the proposed message passing mechanisms. In
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this point of view, Artetxe et al. (2017) only had the
Sup part with lexicon update and ignored the Un-
Sup part. Compared to CSS, PSS indirectly shares
the information in a “soft” way and may be suitable
for some hard BLI tasks. We use the metric formu-
lated in Equation 4 to evaluate (syp and Quynsup ON
the word embedding spaces and choose the better
one as the final output of PSS.

S Experiment

In this section, we conduct extensive experiments
to evaluate the performance of CSS and PSS. We
open the source code on Github*.

5.1 Setup

Baselines We take several methods proposed in
recent five years as baselines, including super-
vised (Artetxe et al., 2016; Joulin et al., 2018;
Jawanpuria et al., 2019), unsupervised (Artetxe
et al., 2016; Lample et al., 2018a; Mohiuddin and
Joty, 2019; Grave et al., 2019; Alaux et al., 2019)
and semi-supervised (Artetxe et al., 2017; Patra
et al., 2019; Mohiuddin et al., 2020) approaches.
Brief introductions could be found in Section 6.
The scores of baselines are retrieved from their pa-
pers or by running the publicly available codes if
necessary. For Mohiuddin et al. (2020), we don’t
find the released source code.

Datasets We evaluate CSS and PSS against base-
lines on two popularly used datasets: the MUSET
dataset (Lample et al., 2018a) and the VecMap?
dataset (Dinu and Baroni, 2015). The MUSE
dataset consists of FASTTEXT word embeddings
(Bojanowski et al., 2017) trained on Wikipedia
corpora and more than 100 bilingual dictionar-
ies of different languages. The FASTTEXT em-
beddings used in MUSE are trained on very large
and highly semantically similar language corpora
(Wikipedia), which means the results on MUSE are
biased (Artetxe et al., 2018a) and easier to obtain.
On the contrary, the VecMap dataset is less biased
and harder using CBOW embeddings trained on the
WacKy scrawled corpora and bilingual dictionaries
obtained from the Europarl word alignments (Dinu
and Baroni, 2015). We use the default training and
test splits for both datasets.

Evaluation Setting Similar to Mohiuddin et al.
(2020), we compare CSS and PSS against baselines

*https://github.com/BestActionNow/SemiSupBLI
Thttps://github.com/facebookresearch/MUSE
*https://github.com/artetxem/vecmap

on three annotated lexicons with different sizes,
including one-to-one and one-to-many mappings:
“100 unique” and “5K unique” contain one-to-one
mappings of 100 and 5000 source-target pairs re-
spectively, while “5K all” contains one-to-many
mappings of all 5000 source and target words, that
is, for each source word there may be multiple tar-
get words. Moreover, we present the experiment
results of five totally unsupervised baselines and
three supervised ones. All the accuracies reported
in this section are the average of four repetitions.
For detailed experimental data, such as the standard
deviation, please refer to the tables in appendix.
Hyperparameter Setting We train our models us-
ing Stochastic Gradient Descent with a batch size
of 400 and a learning rate 1.0 for Sup, a batch size
of 8K and a learning rate 500 for UnSup. The tem-
perature 7" in Equation (7) is 0.1 and the coefficient
¢ in Equation (8) is 1. The additional lexicon size
is set 10000. Each epoch contains 2K supervised
iterations and 50 unsupervised iterations. Each
case runs 5 epochs. The aforementioned parame-
ters work sufficiently good and we didn’t search
the best hyperparameters in this work. All the ex-
periments are conducted by 32-core CPU and one
NVIDIA Tesla V100 core. Our framework finished
in 30 minutes, while the running time for Mohiud-
din and Joty (2019) was 3 hours.

5.2 Results on MUSE Dataset

In Table 1, we show the word translation results
for five language pairs from the MUSE dataset,
including 10 BLI tasks considering bidirectional
translation.

With “100 unique” annotated lexicon, CSS out-
performs all other semi-supervised methods on ev-
ery task. The accuracy score of Patra et al. (2019)
is less than 3% on all tasks because the limited an-
notated lexicon is insufficient for effective learning,
while Artetxe et al. (2017) avoided this problem by
lexicon bootstrap. Both CSS and PSS keep strong
performance with insufficient annotated lexicon by
the proposed message passing mechanisms, and
achieve 2.8% and 0.9% improvement over Artetxe
et al. (2017), respectively. Compared to the itera-
tive CSS that feeds parameters by UnSup directly
into Sup, the parallel PSS has fewer connections
between Sup and UnSup. Thus, CSS performance
is better than PSS under low supervision.

We notice that semi-supervised approaches with
100 unique” annotated lexicon are even worse than
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EN-ES EN-FR EN-DE EN-RU EN-IT Avg.

Method
— — — — — — — — — —

Unsupervised Baselines
Artetxe et al. (2018a) 822 845 825 836 752 742 485 65.1 789 795 754
Lample et al. (2018a) 81.7 833 823 821 740 722 440 59.1 783 78.1 735
Mohiuddin and Joty (2019) 82.6 844 835 824 755 739 412 61.7 788 785 742
Grave et al. (2019) 82.8 84.1 826 829 754 733 437 59.1 66.6 625 713
Alaux et al. (2019) 824 85.1 827 834 755 744 458 649 794 794 753
Supervised Baselines with “5K all” annotated lexicon
Artetxe et al. (2016) 819 834 821 824 742 727 517 637 774 719 747
Joulin et al. (2018) 84.1 863 833 84.1 794 763 579 672 790 814 779
Jawanpuria et al. (2019) 814 855 821 84.1 747 767 513 676 77.8 809 76.2
Semi-Supervised Baselines with “100 unique” annotated lexicon
Artetxe et al. (2017) 799 832 828 830 729 725 389 622 785 717 732
Patra et al. (2019) <3 <3 <3 3 <3 <3 <3 <3 <3 <3 3
CSS - RCSLS 839 851 83.7 835 775 746 488 63.0 799 805 76.0
PSS - RCSLS 82.0 83.1 821 819 744 722 46,5 61.5 787 789 741
Semi-Supervised Baselines with “5K unique’ annotated lexicon
Artetxe et al. (2017) 827 833 829 833 759 724 476 623 787 7117 747
Patra et al. (2019) 822 846 826 839 756 737 522 652 778 786 5.6
Mohiuddin et al. (2020) 80.9 80.8 - - 749 723 522 648 711 765 724
CSS - RCSLS 845 864 845 849 788 774 570 665 814 82.6 784
PSS - RCSLS 835 859 842 845 771 768 565 67.1 800 82.1 778
Semi-Supervised Baselines with “5K all” annotated lexicon
Artetxe et al. (2017) 823 835 829 827 763 725 487 623 779 783 747
Patra et al. (2019) 843 862 839 847 791 76.6 57.1 677 793 824 78.1
Mohiuddin et al. (2020) 80.5 822 - - 739 727 535 67.1 767 783 73.1
CSS - RCSLS 84.5 869 853 853 789 787 573 679 812 827 789
PSS - RCSLS 837 865 844 855 776 786 568 674 804 828 784

Table 1: Word translation accuracy(@ 1) of CSS and PSS on the MUSE dataset with RCSLS as their supervised
loss. CEN’: English, "ES’: Spanish, ’FR’: French, 'DE’: German, 'RU’: Russian, ’IT’: Italian. Underline: the
highest accuracy among the group. In bold: the best among all methods).

the unsupervised methods. This indicates that 100
annotation lexicon is too weak for supervised ap-
proach to learn meaningful transformation. It does
not mean our approach has marginal contribution.
On the contrary, these empirical results reveal that
bad supervised BLI won’t hurt the overall perfor-
mance of our semi-supervised framework and this
is what previous work cannot achieve.

As the annotated lexicon size increases, the dom-
inance of CSS and PSS is still observed. Moreover,
the gap between CSS and PSS disappears as the
size of annotated lexicon gets larger. With “5K
unique” annotated lexicon, CSS and PSS outper-
form other semi-supervised methods on all tasks.
With “5K all” annotated lexicon, CSS and PSS out-
perform other semi-supervised baselines on 9 of
10 tasks. On average, CSS exceeds Artetxe et al.
(2017), Patra et al. (2019) and Mohiuddin et al.
(2020) by 4.2%, 0.8%, 5.8%, respectively.

Taking all methods into consideration, includ-

ing supervised, semi-supervised and unsupervised,
CSS and PSS achieve the highest accuracy on 8 of
10 tasks and the best results on average.

5.3 Results on VecMap Dataset

In Table 2, we show the word translation accuracy
for three language pairs, including 6 translation
tasks on the harder VecMap dataset (Dinu and Ba-
roni, 2015).

Notably, a couple of unsupervised approaches
(Lample et al., 2018a; Mohiuddin and Joty, 2019;
Grave et al., 2019; Alaux et al., 2019) are evaluated
to have a zero accuracy on some of the language
pairs. On the one hand, their valotile results demon-
strate the toughness of the VecMap dataset where
the structural similarity for unsupervised BLI is
very low. On the other hand, unstable performance
may be explained by the high dependence of those
methods on the initialization. Though the perfor-
mance of those methods are highest in some cases,
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EN-ES EN-IT
— = = =

Method

Unsupervised Baselines

Artetxe et al. (2018a) 369 31.6 479 423 483 44.1 419
Lample et al. (2018a) 347 0.0 449 387 0.0 0.0 19.7
Mohiuddin and Joty (2019) 374 319 476 425 0.0 00 266
Grave et al. (2019) 0.0 07 403 348 00 37.1 188
Alaux et al. (2019) 0.0 583 700 69.5 0.0 0.0 33.0
Supervised Baselines with “5K all” annotated lexicon

Artetxe et al. (2016) 195 137 393 207 254 223 235

Joulin et al. (2018)
Jawanpuria et al. (2019)

355 312 446 376 46.6 417 395
375 331 47.6 40.1 488 451 420

Semi-Supervised Baselines with “100 unique” annotated lexicon

Artetxe et al. (2017) 33.1 249 433 392 469 420 382
Patra et al. (2019) <3 <3 <3 <3 <3 <3 <«
CSS - RCSLS 368 314 454 40.9 48.0 422 408
PSS - RCSLS 346 29.6 453 405 48.0 426 40.1

Semi-Supervised Baselines with “5K unique” annotated lexicon

Artetxe et al. (2017) 333 27.6 439 384 460 41.1 384
Patra et al. (2019) 343 316 411 393 475 436 39.6
Mohiuddin et al. (2020) 334 273 441 389 425 394 376
€SS - RCSLS 380 322 464 412 479 432 415
PSS - RCSLS 3897 329 4787 411 4937 437 4237
Semi-Supervised Baselines with “5K all” annotated lexicon

Artetxe et al. (2017) 327 281 438 380 474 408 385
Patra et al. (2019) 345 321 462 395 481 441 408
Mohiuddin et al. (2020) 337 279 437 389 436 392 378
CSS - RCSLS 389 325 466 413 484 425 417
PSS - RCSLS 396 3371 47.8T 4217 508 44.87 431

Table 2: Word translation accuracy(@1) of CSS and
PSS on the VecMap dataset with RCSLS as their su-
pervised loss. (CEN’: English, ’ES’: Spanish, 'DE’:
German, ’IT’: Italian. Underline: the highest accuracy
among the group. In bold: the best among all methods.
In bold and marked by t: the second-highest among all
methods).

e.g. Alaux et al. (2019), due to the unstable nature.
We also mark the second-highest score by bold font
and t if necessary.

At all supervision levels, CSS and PSS outper-
form all other semi-supervised approaches. Taking
all unsupervised, semi-supervised and supervised
methods into account, CSS and PSS achieve SOTA
accuracy on average. Notably, PSS gets the highest
or the second-highest (except the unstable unsuper-
vised baseline (Alaux et al., 2019)) scores for 5 of
6 language pairs.

The results for “100 unique” annotated lexicon
support our finding on the MUSE dataset that CSS
learns better at low supervision level. Interestingly,
with “5K unique” and “5K all” annotated lexicons,
PSS outperforms CSS on almost every task, which
is different from the MUSE dataset. Given that
the structural similarity of embeddings between
different languages in VecMap is very low, UnSup
procedure is very unstable. In this case, CSS has
lower performance due to the unstable Qypsup 18
directly fed into Sup, while the parallel strategy of
PSS does not suffer from this problem.

5.4 Ablation Study

In the ablation study, we disassemble CSS and PSS
into the basic components to analyze the contribu-
tion of each component. Specifically, we consider
the proposed two message passing mechanisms
POT and BLU. For CSS, we also include the effect
of Sup or UnSup module in the cyclic parameter
feeding. However, if Sup or UnSup in PSS is re-
moved, the framework falls back to the unsuper-
vised or supervised BLI, whose results are already
in Table 1 and 2.

We conduct ablation experiments with two an-
notated lexicons with different sizes, 5K all” and
”1K unique” to compare the behavior of CSS and
PSS under different annotation level. The experi-
mental setting is the same as the main experiments.
The ablation results are presented in Table 3 on
four language pairs (2 from MUSE dataset and 2
from VecMap dataset).

Effectiveness of POT and BLU:

Regardless of the annotated lexicon size, remov-
ing POT, BLU and both of them from CSS brings
2.4%, 0.9% and 13.0% decline of accuracy respec-
tively on average. Notably, the cyclic parameter
feeding does not bring further benefits. Only when
combined with at least one message passing mech-
anism, POT or BLU, the accuracy is improved sig-
nificantly. For PSS, removal of POT or BLU brings
1.6% and 1.0% decline on the average score respec-
tively.

Moreover, we consider different annotated lex-
icon sizes. On average, removal of POT, BLU
or both from CSS brings 1.2%, 0.7% and 4.2%
decline respectively with ”5K all” annotated lex-
icon size, 3.4%, 0.9% and 21.6% decline with
”1K unique” annotated lexicon size. The message
passing mechanisms contribute drastically with a
smaller annotated lexicon size since Sup receives
significantly larger additional lexicons from Un-
Sup to strengthen its performance. As for PSS,
removal of POT and BLU brings 0.9% and 1.5%
decline respectively with 5K all” annotated lexi-
con size, 2.3% and 0.7% decline with ”1K unique”
annotated lexicon size. No significant effect of an-
notation level for PSS is observed in ablation study.
For both CSS and PSS, the contribution of POT is
slightly larger than that of BLU and the combina-
tion of them could bring impressive improvement
in general.

Analysis of Sup and UnSup in CSS:
In this step, we remove Sup or UnSup from CSS
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Annotated Lexicon Size 5K all 1K unique
Dataset MUSE VecMap MUSE VecMap avg
EN-ES EN-FR EN-DE EN-IT avg EN-ES EN-FR EN-DE EN-IT avg of all
Languages
— — — “— — — — — — — — “— — “— — —
Results of the Ablation to'CSS Results of the Ablation to CS,

TTCSS-RCSLS 7777|7845 869 855 853 | 484 425 466 413 65.1 || 838 850 839 837 478 428 453 4127 642 || 647
© POT 839 86.6 840 848 | 466 41.7 437 395 639 816 848 822 834 | 41.8 402 365 357 60.8 623
© BLU 832 86.6 844 847 | 474 429 454 404 | 644 825 837 825 822 | 477 426 453 397 | 633 63.8
© POT & © BLU 825 849 830 837 | 417 366 397 348 | 609 610 624 574 595 | 281 224 262 237 | 426 51.7

OUnSup& OPOT | 843 865 848 851 458 401 428 390 636 || 817 833 805 814 | 403 361 382 364 | 597 || 616
© Sup & © BLU 823 832 825 827 | 477 432 453 404 | 634 825 838 822 829 | 478 428 452 39.7| 634 63.4
Results of the Ablation to'PSS Results of the Ablation to PS.

TUPSS-RCSLS 7777837 865 844 855 S0.8 448 478 421 657 || 829 838 824 830 484 430 466 401 638 || 647
© POT 835 854 844 853 | 49.1 431 465 408 | 64.8 81.1 826 824 819 451 407 417 364 | 615 63.1
© BLU 828 854 830 843 | 485 437 460 399 | 642 819 839 822 825| 48.0 426 448 39.0| 63.1 63.7

Table 3: Ablation Study with 5K all” and ”1K unique” annotated lexicon. (©: remove specific component from

the CSS or PSS. &: remove both components.)

and monitor the performance change. Note that if
we remove UnSup from CSS, POT also needs to be
removed as we do not need any prior transport plan
for UnSup anymore. Removing Sup also means the
removal of BLU for a similar reason. After remov-
ing UnSup and POT, CSS feeds @, exactly to
BLU for additional lexicon and then to Sup again,
just like Artetxe et al. (2017, 2018a). After remov-
ing Sup and BLU, UnSup takes the transformation
learned by itself in previous steps to generate the
prior transport plan. The average accuracy drops by
1.5% and 4.5% with 5K all” and 1K unique” an-
notated lexicon respectively after removing UnSup,
by 1.7% and 0.8% after removing Sup.

Given the comparison above, Sup contributes
less than UnSup with ”1K unique” annotated lexi-
con. Whereas Sup and UnSup contribute compara-
bly with ”5K all” annotated lexicon. In other words,
at low annotation level, i.e. 71K unique”, where
Sup BLI does not work well, the participation of
UnSup extends the valuable additional lexicon.

5.5 Results on distant language pairs

In this section, We report the tranlation accuracy
of our method on five distant language pairs with
5000 lexicon. We choose three methods as base-
lines: Patra et al. (2019) proposed semi-supervised
SOTA method. Jawanpuria et al. (2019) is the su-
pervised SOTA method. Zhou et al. (2019) de-
signed an unsupervised matching procedure with
density matching technologies, which achieved sig-
nificant improvement on distant language pairs. As
we need to compare supervised, unsupervised and
semi-supervised method simultaneously, we con-
duct evaluation only on the ”5K unique” supervi-
sion level.

As shown in Table 4, our method also retains a

distinct advantage on these distant language pairs.
In the cases between "EN”’ and “JA”, Patra et al.
(2019) and Jawanpuria et al. (2019) are completely
inefficient. While our method obtains stable results
on these cases, which proves the robustness of CSS
and PSS. Moreover, our method outperforms Zhou
et al. (2019) on most cases. In short, CSS and PSS
could obtain stable and better results on various
language pairs.

6 Related Work

This paper is mainly related to the following three
lines of work.

Supervised methods. Mikolov et al. (2013)
pointed out that it was a feasible way to BLI by
learning a linear transformation based on the Eu-
clidean distance. Artetxe et al. (2016) applied nor-
malization to word embeddings and imposed an
orthogonal constraint on the linear transformation
which led to a closed-form solution. Joulin et al.
(2018) replaced Euclidean distance with the RC-
SLS distance to relieve the hubness phenomenon
and achieved SOTA results for many languages.
Jawanpuria et al. (2019) optimized a Mahalanobis
metric along with the transformation to refine the
similarity between word embeddings.
Unsupervised methods. Artetxe et al. (2018a)
proposed an unsupervised method to generate an
initial lexicon by exploiting the similarity in cross-
lingual space and applied a robust self-learning to
improve it iteratively. Lample et al. (2018a) did
the first work for unsupervised BLI which learned
a linear transformation by adversarial training and
improved it by a refinement procedure. Mohiuddin
and Joty (2019) revisited adversarial autoencoder
for unsupervised word translation and proposed
two novel extensions to it. Moreover, OT-based
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EN-ZH EN-TA EN-JA EN-MS EN-FI Avg.

Method
— — — — — — — — — —

(Semi-)Supervised Baselines with “5K unique” annotated lexicon
Patra et al. (2019) 425 428 153 220 33 348 50 493 48.6 609 37.0
Jawanpuria et al. (2019) 4377 40.1 161 220 00 00 510 498 474 651 335
Zhou et al. (2019) 425 400 179 279 520 356 376 401 507 608 405
CSS - RCSLS 48.6 46.0 17.7 245 503 419 54.6 555 56.0 656 46.1
PSS - RCSLS 478 454 173 233 506 413 546 556 556 664 458

Table 4: Word translation accuracy(@1) of CSS and PSS on the distant language pairs with RCSLS as their
supervised loss. CEN’: English, *TA’: Tamil, 'JA’: Japanese, 'MS’: Malay, "FI’: Finnish. In bold: the best among

all methods).

unsupervised BLI is the central part in this paper.
Alvarez-Melis and Jaakkola (2018) exploited the
structure similarity of embedding space by mini-
mizing the Gromov-Wasserstein metric between
source and target word embedding distributions.
Grave et al. (2019) viewed unsupervised BLI task
as the minimization of Wasserstein distance be-
tween the source and target distributions of word
embeddings. They optimized this problem by us-
ing Sinkhorn and Procrustes alternatively. Alaux
et al. (2019) furthered the work of Grave et al.
(2019) by using the RCSLS as the distance metric,
which addresses hubness phenomenon better than
Euclidean distance. Zhao et al. (2020) proposed
an relaxed matching procedure derived from un-
balanced OT algorithms and solved the polysemy
problem to a certain extent. Xu et al. (2018) used
a neural network implementation to calculate the
Sinkhorn distance, a well-defined OT-based dis-
tributional similarity measure, and optimized the
objective through back-propagation.

Semi-supervised methods. Artetxe et al. (2017)
proposed a simple self-learning approach that can
be combined with any dictionary-based mapping
technique and started with almost no lexicon. Patra
et al. (2019) proposed a semi-supervised approach
that relaxes the isometric assumption and optimizes
a supervised loss and an unsupervised loss together.

Notably, comparing with the self-learning
method like (Artetxe et al., 2018a) or (Vulic et al.,
2019), our framework with two message passing
mechanisms is quite different from theirs. Al-
though the lexicon updating procedures in their
papers are similar with the BLU that we pro-
posed, there are two main differences: (1) Their
approaches use the lexicon from current step to
extract the lexicon for next step. Meanwhile, BLU
uses unsupervised output to extract lexicon for the
supervised part. Our models will degenerate to

their situation after removing the unsupervised part
and POT. This situation has been discussed in the
ablation study in Section 5.4. (2) BLU extracts
lexicon according to bidirectional matching infor-
mation while they only consider one direction. This
trick improves the lexicon quality.

Moreover, alignment of word embeddings in la-
tent spaces by Auto-Encoders or other projections
is another trend of BLI research. Latent space align-
ment includes unsupervised variants (Dou et al.,
2018; Bai et al., 2019; Mohiuddin and Joty, 2019)
and semi-supervised variants (Mohiuddin et al.,
2020). We emphasize that the latent space align-
ment is orthogonal to our proposed framework. Our
entire framework can be transferred to any given
latent space.

7 Conclusions

In this paper, we introduce the two-way interaction
between the supervised signal and unsupervised
alignment by proposed POT and BLU message
passing mechanisms. POT guides the OT-based un-
supervised BLI by prior BLI transformation. BLU
employs a bidirectional retrieval to enlarge the an-
notated data and stabilize the training of supervised
BLI approaches. Ablation study shows that the
two-way interaction by POT and BLU is the key to
significant improvement.

Based on the message passing mechanisms, we
design two strategies of semi-supervised BLI to
integrate supervised and unsupervised approaches,
CSS and PSS, which are constructed on cyclic and
parallel strategies respectively. The results show
that CSS and PSS achieve SOTA results over two
popular datasets. As CSS and PSS are compatible
with any supervised BLI and OT-based unsuper-
vised BLI approaches, they can also be applied to
the latent space optimization.
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Appendix

Dataset MUSE VecMap Distant Language Pairs
Languages EN-ES EN-FR EN-DE EN-RU EN-IT EN-ES EN-IT EN-DE EN-ZH EN-TA EN-JA EN-MS EN-FI
— — — — — — — — — — — — — — — —
Semi-Supervised Baselines with “100 unique” word dictionary
""""""""""" best | 84.1 852 839 835 777 747 493 631 80.1 807 || 369 328 459 411 485 423 | T TTTTTTTTTTTmoToommmommmmmmIITT
CSS - RCSLS avg | 839 851 837 835 775 746 488 630 799 805 | 368 314 454 409 480 422
st 0.193 0.158 0240 0.065 0285 0122 0.525 0.138 0175 0.140|| 0205 0930 0341 0.180 0375 0.087
""""""""""" best | 822 833 826 821 7487 726 472 616 787 79 || 350 297 457 407 483 427 |[ T TTTTTTTTTTTmmmmmmmmmmmmmmmIIeTT
PSS - RCSLS avg | 820 831 821 819 744 722 465 615 787 789 || 346 296 453 405 480 426
st 0.138 0.167 0366 0.249 0358 0.345 0.627 0.136 0078 0.115] 0553 0.156 0406 0.178 0381 0.181

“5K unique” word dictionary

best | 847 865 846
€SS - RCSLS avg | 845 864 845

st 0.167 0.050 0.115
""""""""""" best | 837 860 845
PSS - RCSLS avg | 835 859 842

st | 0173 0115 0236

851790 777 575 668 816 827 || 384 326 465 414 483 433 |[ 487 del 181 249
849 788 774 570 665 814 826 || 38.1 322 464 412 479 432 || 486 460 177 245
0201 0158 0236 0817 0339 0.168 0.136| 0318 0358 0.177 0313 0369 0.113|| 0.196 0.103 0335

"""""""""" 847 772 770 567 676 800 821 || 39.0 332 482 413 496 438 || 479 454 173 234
845 7705 768 565 671 800 821 | 389 329 478 41 493 437 || 478 454 173 233
0171 0129 0.183 0283 0395 0082 0.100| 0.168 0303 0364 0308 0214 0.100[ 0.075 0075 0.115 0.107

87.0 84.6
86.5 844
0.359  0.150

PSS - RCSLS

“SK all” word dictionary

0.100

Table 1: Detailed Experimental Results of CSS and PSS on MUSE Dataset, VecMap Dataset and distant language
pairs. We repeat the experiment on each language pair four times and report best, avg, st of the four results(best:
the highest @1 accuracy. avg: the average accuracy which is reported in main body of this paper. st: the standard

deviation.)

Annotated Leixon Size 5K all 1K unique
dataset MUSE VecMap MUSE VecMap
Languages EN-ES EN-FR EN-DE EN-IT EN-ES EN-FR EN-DE EN-IT
— “— — — — — — “— — “— — — — — — —
Detailed Results of the Ablation to CSS Detailed Results of the Ablation to CSS
””””””””””” best | 846 87.1 855 853 [ 491 429 470 414 || 838 852 840 839 | 482 429 457 413
CSS - RCSLS avg 845 86.9 853 | 484 425 466 413 838 850 839 837 | 478 428 453 412
st 0.126  0.481 0.099| 0.500 0.272 0.425 0.178|| 0.063 0.144 0.175 0.136] 0.408 0.071 0.430 0.096
””””””””””” best | 840 867 841 850 469 420 440 396 || 835 859 830 839 [ 425 409 371 375
© POT avg 839 86.6 848 | 466 417 437 395 81.6 848 822 834 | 418 402 365 357
st 0.156  0.099 0.158] 0.330 0372 0.282 0.093|| 2274 1.004 1.372 0.737| 1.175 0.700 0.835 1.806
oo best | 833 868 847 ¢ 84.9 | 477 431 456 406 || 827 839 829 8237 479 430 460 401
© BLU avg 832 86.6 847 | 474 429 454 404 825 837 825 822 | 477 426 453 397
st 0.083 0.201 0.180| 0.247 0.256 0.219 0.175|| 0259 0.197 0293 0.115 0.268 0314 0.552 0.343
oo best | 829 855 833 ¢ 83.9 | 421773707402 3497(| 621 632 579 60.5| 288 226 268 241
© POT & © BLU avg 825 849 837 | 41.7 366 39.7 3438 61.0 624 574 595| 28.1 224 262 237
st 0.242  0.396 0.205| 0.298 0.234 0.539 0.075|| 0.756 0.628 0.412 0.774| 0.476 0.255 0.410 0.260
””””””””””” best | 844 868 855 855 | 459 40.6 430 395 || 834 844 833 827 | 421 365 386 375
© UnSup & © POT avg 843 86.5 85.1 | 458 40.1 428 39.0 817 833 805 814 | 403 361 382 364
st 0.191 0.223 0.233| 0.144 0365 0.360 0.490|| 1.523 1.346 3.528 1.506] 1.972 0.465 0.368 0.998
””””””””””” best | 824 833 826 829 | 481 436 455 409 || 826 839 823 830 | 479 430 454 404
© Sup & © BLU avg 823 832 827 | 477 432 453 404 825 838 822 829 | 478 428 452 397
st 0.085 0.115 0.347) 0.337 0.530 0.110 0.388|| 0.115 0.115 0.135 0.083| 0.040 0.249 0.148 0.518
Detailed Results of the Ablation to PSS Detailed Results of the Ablation to PSS
””””””””””” best | 839 870 846 855 [ 512 450 483 4257|| 831 845 824 832 488 433 471 405
PSS - RCSLS avg 837 865 844 855 | 50.8 448 478 42.1 829 838 824 830 | 484 430 46.6 40.1
st 0.163 0.359 0.150 0.100] 0.513 0.345 0.968 0.436|| 0.139 0476 0.063 0.183] 0.409 0.314 0451 0.334
o best | 837 862 845 855 | 493 438 468 409 || 813 835 825 824 457 418 425 371
© POT avg 835 854 844 853 | 49.1 431 465 4038 81.1 826 824 819 | 451 407 41.7 364
st 0.162 1.568 0.087 0.300] 0.205 0.731 0.446 0.138|| 0.348 0.839 0.135 0.707| 0.816 1326 1.222 0.830
””””””””””” best | 829 857 831 844 | 489 440 469 402|| 821 843 825 829 | 485 428 453 400
© BLU avg 828 854 83.0 843 | 485 437 460 399 819 839 822 825 480 426 448 390
st 0.083 0.168 0.083 0.139| 0.391 0.297 0.768 0.183|| 0.258 0.252 0.162 0.301] 0.353 0.199 0.531 0.746

Table 2: Detailed Experimental Results Ablation Study.

We repeat the experiment on each language pair four

times and report best, avg, st of the four results(best: the highest @1 accuracy. avg: the average accuracy which
is reported in main body of this paper. st: the standard deviation.)
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