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Abstract

Abstract Meaning Representation (AMR) is a
popular formalism of natural language that rep-
resents the meaning of a sentence as a seman-
tic graph. It is agnostic about how to derive
meanings from strings and for this reason it
lends itself well to the encoding of seman-
tics across languages. However, cross-lingual
AMR parsing is a hard task, because training
data are scarce in languages other than English
and the existing English AMR parsers are not
directly suited to being used in a cross-lingual
setting. In this work we tackle these two
problems so as to enable cross-lingual AMR
parsing: we explore different transfer learning
techniques for producing automatic AMR anno-
tations across languages and develop a cross-
lingual AMR parser, XL-AMR. This can be
trained on the produced data and does not rely
on AMR aligners or source-copy mechanisms
as is commonly the case in English AMR pars-
ing. The results of XL-AMR significantly sur-
pass those previously reported in Chinese, Ger-
man, Italian and Spanish. Finally we provide
a qualitative analysis which sheds light on the
suitability of AMR across languages. We re-
lease XL-AMR at github.com/SapienzaNLP/xI-
amr.

1 Introduction

Abstract Meaning Representation (AMR) is a pop-
ular formalism for natural language (Banarescu
et al., 2013). It represents sentences as rooted,
directed and acyclic graphs in which nodes are
concepts and edges are semantic relations among
them. AMR unifies, in a single structure, a rich set
of information coming from different tasks, such
as Named Entity Recognition (NER), Semantic
Role Labeling (SRL), Word Sense Disambiguation
(WSD) and coreference resolution. Such repre-
sentations are actively integrated in several Natu-
ral Language Processing (NLP) applications, inter

alia, information extraction (Rao et al., 2017), text
summarization (Hardy and Vlachos, 2018; Liao
etal., 2018), paraphrase detection (Issa et al., 2018),
spoken language understanding (Damonte et al.,
2019), machine translation (Song et al., 2019b) and
human-robot interaction (Bonial et al., 2020). It
is therefore desirable to extend AMR semantic rep-
resentations across languages along the lines of
cross-lingual representations for grammatical anno-
tation (de Marneffe et al., 2014), concepts (Conia
and Navigli, 2020) and semantic roles (Akbik et al.,
2015; Di Fabio et al., 2019). Furthermore, it could
be especially useful to integrate cross-lingual se-
mantic structures in multilingual applications of
natural language understanding.

A peculiar feature of the AMR formalism is
that it aims at abstracting away from word forms.
AMR graphs are unanchored, i.e., the linkage be-
tween tokens in a sentence and nodes in the corre-
sponding graph is not explicitly annotated. Hence,
the feature of being agnostic about how to derive
meanings from strings makes AMR particularly
suitable for representing semantics cross-lingually.
However, AMR was initially designed for encod-
ing the meaning of English sentences. Owing to
this, the available resources and modelling tech-
niques focus mostly on English, while leaving
cross-lingual AMR understudied. Some prelimi-
nary studies showed the limits of AMR as an inter-
lingua, categorizing them as due to distinctions in
the underlying ontologies or structural divergences
among languages (Xue et al., 2014; Hajic et al.,
2014). More recent studies, instead, have provided
evidence that AMR or a simplified version of it can
be used as a formalism for cross-lingual semantic
representation, showing that it is possible to over-
come some of the structural linguistic divergences
(Damonte and Cohen, 2018; Zhu et al., 2019).

The underlying idea of this paper is that AMR
can be used to represent semantic information in
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different languages since there exist key linguistic
features that are shared across languages, such as
predicates, roles and conjunctions (Von Fintel and
Matthewson, 2008). However, developing an AMR
parser for multiple languages is hard because the
existing annotated training resources that are suf-
ficiently large are available in English only, and,
moreover, acquiring semantic annotations for a
large number of sentences is well-known to be a
slow and expensive process in NLP (Zhang et al.,
2018; Pasini, 2020). To this end, we aim at ex-
ploiting and developing the necessary tools and
resources for enabling cross-lingual AMR parsing,
i.e., the task of transducing a sentence in the source
language into an AMR graph based on English (Da-
monte and Cohen, 2018).

We present XL-AMR, a cross-lingual AMR parser,
and study different transfer learning techniques to
enable its training: i) model transfer which relies
on language-independent features, ii) annotation
projection relying on parallel corpora and available
English AMR parsers, and iii) automatic translation
of the training corpora which guarantees gold AMR
structures. We make the following contributions:

e We develop and release XL-AMR, a cross-
lingual AMR parser which disposes of word
aligners, i.e., word-to-word and word-to-node,
and surpasses the previously reported results
on Chinese, German, Italian and Spanish, by
a large margin.

e Exploration of different techniques to create
cross-lingual AMR training data, showing how
it is possible to transfer semantic structure
information across different languages.

e Creation and release of diverse quality silver
data for cross-lingual AMR parsing.

e Qualitative analysis of the ability of XL-AMR
to transfer semantic structures across lan-
guages and of AMR to represent the meaning
of sentences cross-lingually.

2 Related Work

Our work lies between two areas, namely, semantic
parsing and cross-lingual transfer learning.

Semantic parsing Semantic parsing is a key task
required to complete the puzzle of Natural Lan-
guage Understanding (Navigli, 2018), and one
which is receiving growing attention in the sci-
entific community. Besides AMR, various differ-
ent formalisms have been proposed over the years

to encode semantic structures: Elementary De-
pendency Structures (Oepen and Lgnning, 2006,
EDS), Prague Tectogrammatical Graphs (Haji¢
etal., 2012, PTG), Universal Conceptual Cognitive
Annotation (Abend and Rappoport, 2013, UCCA),
Universal Decompositional Semantics (White et al.,
2016, UDS), inter alia. While some frameworks,
such as UCCA and UDS, have been exploited in
a cross-linguistic setting (Lyu et al., 2019; Zhang
et al., 2018), cross-lingual AMR has mainly been
studied within the scope of annotation analysis
works (Xue et al., 2014; Haji¢ et al., 2014). These
works point out the limitations of AMR as an in-
terlingua, and consider them partly due to the dis-
tinctions in the underlying ontologies and struc-
tural divergences among languages. Zhu et al.
(2019) also evaluate the properties of AMR across
languages and aim at simplifying this formalism
in order to express only essential semantic fea-
tures of a sentence, such as predicate roles and
linguistic relations. Cross-lingual AMR parsing,
instead, has received relatively less attention. This
is largely attributable to the lack of training data
and evaluation benchmarks in languages other than
English. Damonte and Cohen (2018) propose, to
the best of our knowledge, the only cross-lingual
AMR parser to date and, moreover, their proposed
cross-lingual AMR evaluation benchmark has been
released only very recently (Damonte and Cohen,
2020). The authors adapt a transition-based English
AMR parser (Damonte et al., 2017) for cross-lingual
AMR parsing, which is trained on silver annotated
data. However, the performances it has achieved
are not satisfying in terms of Smatch score (Cai
and Knight, 2013), mostly as a result of concept
identification errors, which in turn are directly re-
lated to the usage of noisy word-to-node alignments
projected from English. Throughout the literature
English AMR parsers commonly rely on AMR align-
ments which are automatically created using heuris-
tics (Flanigan et al., 2014), or on pretrained align-
ers (Pourdamghani et al., 2014; Liu et al., 2018),
treated as latent variables of the model (Lyu and
Titov, 2018) or implicitly modelled through source-
copy mechanisms (Zhang et al., 2019). These align-
ments, however, take advantage of the fact that
AMR nodes and English words are highly related.'
This dependency is therefore not suitable for cross-
lingual parsing since similarity between words in

'Tn AMR 2.0 roughly 60% of the nodes are English words.

In addition, PropBank predicates are often similar to English
words, e.g., one can heuristically align publish-01 to publish.
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the sentences and concepts in the graph does not
hold at large. Our parser, instead, disposes of ex-
plicit and implicit AMR alignments using a seq2seq
model for concept identification and achieves sig-
nificantly higher performance on all the tested lan-
guages. On the other hand, to account for data
sparsity, XL-AMR employs several common tech-
niques in English AMR parsing literature (Konstas
etal., 2017; Zhang et al., 2019), such as anonymiza-
tion and recategorization, expanding them across
languages by relying on multilingual resources.

Transfer learning The idea behind this method
is to leverage annotations available in one language,
commonly English, to enable learning models that
generalize to languages where labelled resources
are scarce (Ruder et al., 2019). Different techniques
include annotation projection, machine translation
and language-independent feature-based models.
Extensive works in this direction exist, applied
to different NLP tasks, i.e., WSD (Barba et al.,
2020), SRL (Padé and Lapata, 2009; Kozhevnikov
and Titov, 2013), Dependency Parsing (Tiedemann,
2015), concept representation (Conia and Navigli,
2020), etc. In cross-lingual AMR parsing, annota-
tion projection is employed by Damonte and Cohen
(2018), who produce cross-lingual silver AMR an-
notations by exploiting parallel sentences selected
from the Europarl corpus (Koehn, 2005): English
sentences are parsed using an English parser (Da-
monte et al., 2017, AMREAGER) and the result-
ing graphs are associated with the corresponding
parallel sentences. However, the data on which
AMREAGER was trained is very different from
those used to produce the silver annotations, thus
affecting the quality and reliability of the AMR
graphs produced. Here we test two different tech-
niques: we conduct experiments with annotation
projection using Europarl for comparison, and, in
addition, we use translation techniques to produce
better quality training corpora. This leads to sig-
nificant improvements and provides evidence that
better quality data — and models — allow for using
AMR as an interlingua.

3 Cross-Lingual AMR

In what follows we first formalize the task (Section
3.1) and then detail our cross-lingual AMR parser
(Section 3.2) and our proposed silver data creation
methods (Section 3.3). Finally, we list the pre-
and postprocessing cross-lingual techniques and
resources we employ (Section 3.4).

: (A) Parallel Sentences DEpe - . X
Die Stadt Tel Aviv ist weniger als 650 Meilen

vom iranischen Territorium entfernt.

ES
La ciudad de Tel Aviv estd a menos de
1.046 km del territorio irani.

EN
The city of Tel Aviv is fewer than
650 miles from Iranian territory. .

La citta di Tel Aviv dista meno di 650

miglia dal territorio iraniano.

zm
LA 51 5 2 DR 4 5 1 R % 451
H 6505 .

___________________________ Yoo

f (B) Concept Identification

be-located-at-91 city Tel Aviv name Tel Aviv
relative-position  territory country Iran name
Iran less-than 650 mile

(C) Relation Identification
be-located-at-91

-\

city relative-position
i %
name Tel_Aviv territory Teseiam
AR 5 5 %
g g ¢
Tel Aviv 650 mile
country
S \%
name Iran

Figure 1: Cross-Lingual AMR Parsing: (A) Sentences
written in different languages sharing the same mean-
ing; (B) concepts representing the words in the sen-
tences; (C) the final AMR graph.

3.1 The Task

Cross-lingual AMR parsing is defined as the task of
transducing a sentence in any language to the AMR
graph of its English translation whose nodes are
either English words, PropBank framesets (Kings-
bury and Palmer, 2002) or special AMR keywords.

Breaking down this definition, given an English
sentence and its translation 77, in a language L,
their meaning representation is ideally formalized
by the same AMR, G = (V, E), where V' is a list
of concept nodes and E is the set of semantic re-
lations between them. Figure 1-A shows an ex-
ample of a sentence in English, with its transla-
tions into Chinese, German, Italian and Spanish
which have the same meaning and therefore the
same abstract representation (Figure 1-C). Follow-
ing state-of-the-art models for English AMR pars-
ing (Zhang et al., 2019), we tackle cross-lingual
AMR parsing as a two-stage approach, i.e., con-
cept and relation identification, which we briefly
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overview here and later detail in Section 3.2. For
concept identification, given the sequence 17, =
(t1,t2,...,t;), t; being a word in language L
(1€ {l,...,5}, L € {EN, DE, ES, IT, ZH}), we
train a neural network to generate the list of nodes
V = (v1,v2,...,v,), v; € Englishwords U
PropBank framesets U AMR keywords. In Figure
1-B we show the list of concepts that represent the
words in the sentences of Figure 1-A. The rela-
tion identification procedure, instead, is inspired
by the arc-factored approaches employed in depen-
dency parsing (Kiperwasser and Goldberg, 2016),
i.e., searching for the maximum-scoring connected
subgraph over the identified concepts in the previ-
ous step. Thus, given the list of predicted nodes
V = (v1,v9,...,v,) and a learned score for each
candidate edge, we search for the highest-scoring
spanning tree and then merge the duplicate nodes
based on unique node indices (see Section 3.2) to
restore the final AMR graph. Figure 1-C shows
the AMR representing the shared semantics of the
sentences in Figure 1-A.

3.2 XL-AMR Model

XL-AMR is composed of two modules which are
learned jointly, i.e., concept identification, modeled
as a seq2seq problem, and relation identification,
based on a biaffine attention classifier (Dozat and
Manning, 2017). We use a seq2seq model to dis-
pose of the need for an AMR alignment module.
Lyu and Titov (2018) argue that alignments are im-
portant for injecting a useful inductive bias for AMR
parsing and maintain that alignment-based parsers
might be better than seq2seq for AMR parsing, ow-
ing to the relatively small amount of data available
for AMR. However, aligning words to AMR nodes
in cross-lingual parsing is challenging. The widely
used AMR aligners are usually based on heuristics
(Flanigan et al., 2014), or on the fact that AMR and
English are highly cognate (Pourdamghani et al.,
2014). Hence, these approaches would not be valid
for cross-lingual alignment and, moreover, project-
ing the alignments across languages through En-
glish has shown to be noisy and to affect the parsing
performance (Damonte and Cohen, 2018).

Concept identification At training time we ob-
tain the list of nodes by first converting the graph
into a tree, duplicating the nodes occurring in mul-
tiple relations, and then using a pre-order traversal
over the tree. To account for reentrancies we as-
sign a unique index to each node during traversal,

similarly to Zhang et al. (2019). Following the
attention-based encoder-decoder architecture pro-
posed by Bahdanau et al. (2015), our concept iden-
tification module consists of a bidirectional RNN
encoder and a decoder that attends to the source
sentence at each concept decoding step.

The encoder employs an L-layer bidirectional
RNN (Schuster and Paliwal, 1997) with LSTM
cells (Hochreiter and Schmidhuber, 1997), i.e.,
BiLSTM, which encodes the input token embed-
dings e; into hidden states h;. Each hidden state

hl = [hL; hl], is a concatenation of the forward hid-
den state and the backward hidden state at timestep
. Similarly to Zhang et al. (2019), the input to-
ken embedding e; is a concatenation of contex-
tualized embeddings, word embeddings, Part-of-
Speech (PoS) embeddings, token anonymization
indicator’ and character-level embeddings. The
subsequent BiLSTM layer, instead, takes the hid-
den states of the previous layer as input.

The decoder also consists of L recurrent neural
network (unidirectional) layers with LSTM cells.
The decoder embedding layer concatenates word
embeddings, node index embeddings and character-
level embeddings. The layer [ of the decoder cal-
culates d: = decoder;(d\"!,d._,), where d. ™t is
the concept hidden state of the previous layer at
timestep ¢ while d’_; that of previous timestep.
dé is initialized with the concatenation of the en-

coder’s last hidden states h! = [ﬁ, ﬁ] We follow
the input feeding approach of Luong et al. (2015),
which concatenates the output of the decoder’s em-
bedding layer and an attentional vector computed at
the previous timestep. We first compute the source
attention distribution a; using additive attention
(Bahdanau et al., 2015) as follows:

er; = v tanh(Wy,hE + WedE + by)

a; = softmax(e;)

ct = E asih;
i

where v, W}, W and bs are model parameters, and
c; is the source context vector. Then, we compute
the attentional vector, d; = tanh(W,[c;; d¥] + b,),
where W, and b, are model parameters.

Zhang et al. (2019) used the attentional vector
to allow the decoder to copy nodes predicted in
the previous steps (target-copy), rather than only

Tokens representing named entities are anonymized dur-
ing preprocessing and restored in postprocessing (Section 3.4).
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generating a new node from the vocabulary. As
they provide empirical evidence that this is cru-
cial for handling reentrancies, we employ their
target-copy approach and use the attentional vec-
tor d; to i) feed in a dense layer and softmax to
produce a probability distribution over the vocab-
lﬂaf}’ Pyocab = SOftmaX(Wvocabdt + bvocab)s ii) to
learn a target attention distribution d; (similar to
the source attention distribution above), iii) to cal-
culate peopy and pgenerate probabilities that decide
either to copy one of the previously predicted nodes
by sampling a node from the rarget attention dis-
tribution dy, or to generate a new node from the
output vocabulary. Each newly generated node is
assigned a unique index, or it is assigned the index
of the node copied from the previously generated
concepts. At prediction time, we employ a beam
search to decode the list of nodes based on the
probability distribution computed above.

Relation identification For this module, we fol-
low Zhang et al. (2019) and use a deep biaffine
classifier inspired by Dozat and Manning (2017),
which takes as input the decoder states and factor-
izes the edge prediction in two components pre-
dicting i) whether there is an edge between a pair
of nodes, and ii) the edge label for each possible
edge, respectively. We direct the reader to Zhang
et al. (2019) and Dozat and Manning (2017) for
technical details on the biaffine attention classifier.
At prediction time, to ensure the validity of the tree,
given the list of predicted nodes and the score for
candidate edges, we search for the highest-scoring
spanning tree using the Chu-Liu-Edmonds algo-
rithm. We then merge the duplicate nodes based on
the node indices to restore the final AMR graph.
The model is trained to jointly minimize the loss of
reference nodes and edges.

3.3 Silver Training Data

In order to train cross-lingual AMR parsers and to
evaluate the cross-lingual properties of AMR as an
interlingua, we project existing AMR annotations
for English sentences to target language sentences
following two different approaches.

Parallel sentences - silver AMR graphs We fol-
low Damonte and Cohen (2018) and project AMR
graphs from English sentences to target language
sentences through a parallel corpus. Differently
from Damonte and Cohen (2018), we do not need
word-to-word and word-to-node aligners for train-
ing the concept identification module. Instead we

directly pair a sentence in the target language with
the AMR graph corresponding to its English coun-
terpart. In this case, while the sentences are paral-
lel, the AMR graphs are of silver standard quality,
i.e., the English sentences of the parallel corpus are
parsed using an existing AMR parser. We refer to
this method as PARSENTS-SILVERAMR.

Gold AMR graphs - silver translations In ad-
dition to pivoting through parallel sentences, we
investigate whether considering human-annotated
AMR graphs could bring more benefits than system
produced AMR graphs. To this end, we make use of
the existing gold standard datasets for AMR parsing,
i.e., English sentence-AMR graph pairs, and use ma-
chine translation systems to translate the training
sentences into the target language. This choice
is motivated by the existence of reliable machine
translation systems for the languages of our inter-
est. Moreover, we validate the silver translations
through a back-translation step (Sennrich et al.,
2016). That is, firstly, we translate the sentences
from English to the target language and, secondly,
using the same neural translation model, we trans-
late the target language translations back to English.
Then, to filter out less accurate translations we ap-
ply a 1-N N strategy based on the cosine similarity
between translations and source sentence seman-
tic embeddings, similarly to Artetxe and Schwenk
(2019a). If the nearest neighbour of a translation
corresponds to its source English sentence, we con-
sider it a good translation, otherwise we discard
it. We employ semantic similarity since we have a
two-step automatic translation, due to which lexical
differences are introduced into translations com-
pared to the original sentence. Typical machine
translation metrics, e.g., BLEU, METEOR, rely on
lexical similarity, which could lead good transla-
tions being discarded. In fact, we do not need the
translation to be word-to-word aligned, but rather
to preserve the meaning of the sentence, thus con-
sidering valid also the cases when certain words
are translated into synonyms or related words. We
refer to this method as GOLDAMR-SILVERTRNS.

3.4 Pre- and Postprocessing

AMR parsers in the literature rely on several pre-
and postprocessing rules. We extend these rules
for the cross-lingual AMR parsing task based on
several multilingual resources such as Wikipedia,
BabelNet 4.0 (Navigli and Ponzetto, 2010), DBpe-
dia Spotlight API (Daiber et al., 2013) for wikifi-
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Dataset Lang Train Insts Dev Insts  Source
Gold EN 36521 1368 AMR 2.0
DE 20000 2000 Europarl
PARSENTS EN 20000 2000 Europarl
SILVERAMR ES 20000 2000 Europarl
IT 20000 2000 Europarl
GOLDAMR DE 34415 1319 AMR 2.0
SILVERTRNS ES 34552 1325 AMR 2.0
IT 34521 1322 AMR 2.0
ZH 32154 1276 AMR 2.0

Table 1: Dataset quality standard, instances per lan-
guage, and the source corpus of the sentences.

cation in all languages but Chinese, for which we
use Babelfy (Moro et al., 2014) instead, Stanford
CoreNLP (Manning et al., 2014) for English pre-
processing pipeline, the Stanza Toolkit (Qi et al.,
2020) for Chinese, German and Spanish sentences,
and Tint? (Aprosio and Moretti, 2016) for Italian.
The preprocessing steps consist of: i) lemmatiza-
tion, ii) PoS tagging, iii) NER, iv) re-categorization
of entities and senses, v) removal of wiki links and
polarity attributes. The postprocessing steps consist
of restoring 1) anonymized subgraphs, ii) wikifica-
tion, iii) senses, iv) polarity attributes. We give full
details on pre- and postprocessing in Appendix A.

4 Experiments

We now present a set of experiments for cross-
lingual AMR parsing when using different training
techniques and the silver data we created (see Sec-
tion 3.3). We discuss the results of our multiple
settings and compare with previous approaches per-
forming cross-lingual AMR parsing.

Test bed We evaluate on the Abstract Meaning
Representation 2.0 - Four Translations (Damonte
and Cohen, 2020), a corpus containing transla-
tions of the test split of 1371 sentences from the
LDC2017T10 (AMR 2.0), in Chinese (ZH), Ger-
man (DE), Italian (IT) and Spanish (ES). This data
is designed for use in cross-lingual AMR parsing
(available to all LDC subscribers).

Dataset In Section 3.3, we explained the two
projection approaches for obtaining cross-lingual
AMR data, i.e., PARSENTS-SILVERAMR and
GOLDAMR-SILVERTRNS.

For the first approach, inspired by Damonte and
Cohen (2018), and for comparison purposes, we

3Stanza does not provide a NER model for Italian.

choose Europarl as parallel corpus.* We predict the
silver AMR using the model of Zhang et al. (2019).

For the second approach, instead, i.e.,
GOLDAMR-SILVERTRNS, we choose AMR 2.0
as gold dataset and translate the sentences into
Chinese, German, Italian and Spanish. For
German, Italian and Spanish, for both translating
and back-translating the sentences we use the
machine translation models made available by
Tiedemann and Thottingal (2020, OPUS-MT).’
For Chinese, instead, since OPUS-MT does not
provide translation models, we employ the released
MASS® (Song et al., 2019a) supervised neural
translation models. Then, to filter out less accurate
translations, we compute the cosine similarity
between dense semantic representations of the
original English sentence and its back-translated
counterpart. To embed the sentences we use
LASER (Artetxe and Schwenk, 2019b), a state-of-
the-art model for sentence embeddings. Details on
the number of instances per language and for each
silver data approach are shown in Table 1.

Training configurations We conduct experi-
ments following different training approaches:

e Zero-shot — the model is trained on English
sentences only, relying on multilingual fea-
tures, and is evaluated on all the target lan-
guages (henceforth ()-shot).

e Language-specific — the model is trained
only on target language data, i.e., DE, ES,
IT or ZH, and evaluated in the same language.

¢ Bilingual — the model is trained on English
data and one of either DE, ES, IT or ZH, and
evaluated in the target language.

e Multilingual — the model is trained on data
from all available languages per setting and
evaluated on the target languages.

Systems We denote the variations of XL-AMR,
based on the above training configurations, as XL-
AMRY where, data € {par,trans,amr}, par
referring to the data produced with PARSENTS-
SILVERAMR approach, trans to GOLDAMR-
SILVERTRNS approach, amr to the AMR 2.0 En-
glish gold standard, and data+ refers to combining
par or trans with amr. The only existing cross-
lingual AMR parser from the literature to date is

*We do not produce silver AMR graphs for Chinese since
Europarl does not cover the Chinese language.

SWe provide the list of models we used in Appendix B.
8 github.com/microsoft/MASS
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Parser Configuration DE ES IT ZH

AMREAGER Lang-Spec. 39.0 420 43.0 35.0
XL-AMRG™ ()-shot 327 39.1 371 259
XL—AMR%“H’ ()-shot 383 41.8 41.0 239
Lang-Spec. 40.8 442 434 -
XL-AMRP" Multiling. 415 456 450 -
Biling. 4277 479 46.7 -
Multiling. 463 512 509 -
_ par+
XL-AMR Biling. 470 530 514 -
Lang-Spec. 51.6  56.1 567 43.1
XL-AMR!T@"8 Multiling. 499 53.0 540 400
Multiling. (-ZH) 51.5 555 559 -
rans Multiling. 499 532 535 410
_ trans+
XL-AMR Multiling. (-ZH) 52.1 562 567 -
Biling. 53.0 58.0 581 415

Table 2: Smatch F1 scores on DE, ES, IT and ZH. Best
scores per language are denoted in bold.

the one of Damonte and Cohen (2018, AMREAGER
Multilingual), henceforth AMREAGER. We com-
pare the results of the XL-AMR variants with the
projection method of AMREAGER on the gold
dataset, i.e., AMR 2.0 - Four Translations. We
remark that we do not consider the results of their
Machine Translation’” method, since, as empha-
sised by the authors, it is not informative in terms
of cross-lingual properties of AMR (Damonte and
Cohen, 2018) because it performs English AMR
parsing. We provide details of our model hyperpa-
rameters in Appendix C.

Results In Table 2 we show the Smatch® score
of the models. This metric computes the degree of
overlap of two AMR graphs (Cai and Knight, 2013).

We point out the low score of the (-shot models,
i.e., XL-AMR{"" and XL—AMRSQH, which perform
lower than AMREAGER, especially in the Chinese
language. However, XL—AMR%WAJr noticeably im-
proves over XL-AMR;"™", which can be explained
by the fact that seq2seq requires a large amount
of data in order to generalize. This is confirmed
by a fine-grained analysis showing lower accuracy
of XL-AMR{"™" compared to XL—AMRSC"’Jr in con-
cept identification, which, we recall, is a seg2seq
module.

Interestingly, the language-specific XL-AMRP?",
even if trained on less instances, outperforms the
()-shot models by a large margin. Moreover, it
also surpasses AMREAGER, which is trained on

the same sentences from Europarl. The results are

"It translates the test sentences from the target language to
English and parses the translations using an English parser.
8 github.com/snowblink 14/smatch

further improved when jointly training in multi-
ple languages, i.e., when using the multilingual
and bilingual configurations. We attribute this im-
provement to the ability of a seg2seq model to
learn better when provided with a larger training
set. The domain of the Europarl data is very spe-
cific, which does not enable the model to generalize
in sentences from other domains. In fact, the XL-
AMRP¥+ models significantly improve over the
XL-AMRP?" bilingual and multilingual models. We
attribute the higher performances of XL-AMRP"+
to 1) larger training dataset, ii) training on different
domains, and iii) better quality of the data (AMR
2.0 data is human annotated).

The XL-AMR!%" models perform best: we
note that the performances of the language-specific
variants outperform those of the multilingual XL-
AMR%S models, in contrast to the behaviour of
the XL-AMRP®" models, suggesting that the addi-
tion of silver data in other languages is not bene-
ficial. This may be due to the fact that the AMR
graphs of translated sentences are the same, thus
as a consequence the model does not access ex-
tra information. Moreover, the inclusion of trans-
lated sentences in other languages slightly harms
the performances. This is confirmed by the re-
moval from the training set of the most distant
language, in the multilingual (-ZH) model, which
in turn achieves around 2 F1 points more compared
to the multilingual version including Chinese. This
can be further explained by the linguistic differ-
ences between Chinese and the other languages,
which prevent them from benefiting from the in-
clusion of Chinese instances in the training set.
However, when adding English gold AMR 2.0, i.e.,
XL-AMR!"¥ % the model benefits from the bet-
ter quality of this dataset. In fact, the bilingual
version of XL-AMR!%"5% ig the best performing
across the board in German, Spanish and Italian,
surpassing AMREAGER by at least 14 F1 points and
both XL-AMRP?" and XL-AMRP"* by at least 5 F1
points in each language. Interestingly, the best
results in Chinese are achieved by the language-
specific XL-AMR!"*"S surpassing AMREAGER by 8
F1 points and the (-shot models by more than 17 F1
points. This is once again explained by the linguis-
tic differences of Chinese as compared to the other
languages, which render the additional data non-
beneficial. Table 3 shows the fine-grained evalua-
tion of AMREAGER and our best performing mod-
els for each data creation approach, for which we
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AMREAGER XL-AMRPY+ XL-AMR!Tens+

Metric DE ES 1T ZH DE ES IT ZH DE ES IT 7ZH

SMATCH 39.1 42.1 432 346 470 530 514 - 53.0 58.0 58.1 43.1
Unlabeled 450 46.6 485 41.1 520 583 57.1 - 57.7 63.0 63.4 489
No WSD 39.2 422 425 347 47.1 532 515 - 53.2 584 584 432
Reentrancies 18.6 27.2 257 159 33.6 40.1 392 - 399 46.6 46.1 34.7
Concepts 449 533 523 399 487 58.0 556 - 58.0 659 64.7 48.0
Named Ent. 63.1 65.7 67.7 67.9 63.1 61.6 62.7 - 66.0 66.2 70.0 60.6
Wikification 499 445 50.6 46.8 614 63.8 66.1 - 609 63.1 67.0 545
Negation 18.6 19.8 223 6.8 8.1 215 257 - 11.7 234 292 128
SRL 294 359 343 272 408 487 46.7 - 479 552 547 413

Table 3: Fine-grained F1 scores DE, ES, IT and ZH. Best scores per language are denoted in bold.

use the evaluation tools® of Damonte et al. (2017).
The fine-grained results for the AMREAGER are not
reported by Damonte and Cohen (2018), therefore
we run the evaluation using their released models.'°
Our best model outperforms AMREAGER in all sub-
tasks except for Negations in German and Named
Entities in Chinese, which are prone to heuris-
tic string matching errors in the pre- and postpro-
cessing procedure of our models. XL-AMR!"ans+
achieves significantly higher performance in Reen-
trancies, Concepts, SRL, in all the tested languages,
compared to AMREAGER, thus demonstrating the
effectiveness of our parser and data creation ap-
proaches.

In summary, translating the gold standard train-
ing data, i.e., GOLDAMR-SILVERTRNS, leads XL-
AMR to achieve higher performances than when
trained on parallel sentences associated with silver
AMR graphs, i.e., PARSENTS-SILVERAMR.

5 Qualitative Analysis

We manually check the predictions of XL-AMR in
order to establish the nature of the mistakes based
on the Smatch score between the gold and predicted
AMR graphs and determine their severity. Then,
we observe how XL-AMR handles the translation
divergences, i.e., linguistic distinctions that make
transfer across languages difficult (Dorr, 1994).

Smatch errors The parser has difficulties with
some compounded words in German, e.g., Uran-
produktionsfihigkeit (uranium production capabil-
ity), Kernkraftstoffkreislauf (nuclear fuel cycle), for
which it fails to break their meaning down to the
correct subgraph, e.g., (c / cycle-02 :ARG1 (f /fuel
:mod (n / nucleus))), thus predicting a generic node,

? github.com/mdtux89/amr-evaluation
1%github.com/mdtux89/amr-eager-multilingual

i.e., (t/ thing). This issue can be alleviated using a
better preprocessing to split the compounds.
Several cases with low Smatch score are due to
inconsistent translations of test set sentences into
the target language, even though, we recall, the test
set has been manually translated. This could be
due to translator choices, but can lead to divergent
meaning structures, e.g., Ich kann verstehen, wie
Du Dich fiihlst (DE) (I can understand how you
are feeling) whose original English sentence from
which the AMR graph is projected is I know what
you're feeling. The gold AMR graph is thus not
appropriate for the German sentence, due to the
sentence’s different meaning. Thus these mistakes
are not due to the parser, but to the translations.
An interesting cause of drop in the Smatch arises
from the prediction of concepts that are synonyms
of the corresponding concepts in the gold graph,
e.g., say-01 — state-01, stop-01 — halt-01, best
friend — best mate, demand-01 — urge-01, etc.
We notice that the predicted concepts (to the left of
the arrow) are less specific than the gold concepts,
yet somehow preserve the meaning. These exam-
ples show that the parser captures a close meaning
even when failing to predict the exact concept.

Translation divergences We investigate how
XL-AMR deals with the cases where there exist
translation divergences, i.e., cases in which source
and target language have different syntactic order-
ing properties (Dorr, 1990), as classified by Dorr
(1994) using the following 7 categories: i) the-
matic, ii) promotional, iii) demotional, iv) struc-
tural, v) conflational, vi) categorial, vii) lexical !

A thematic divergence happens when the
argument-predicate structure is different across lan-

"n absence of a larger available resource for language
divergences, here we make use of some of the pre-classified
examples from Dorr (1990, 1994).
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guages, e.g., I like travelling where I is the subject,
in Italian becomes Mi piace viaggiare, and Mi is
now the object. XL-AMR overcomes this diver-
gence and predicts the correct AMR, (1 / like-01
:ARGO (i/1) :ARG1 (t/ travel :ARGO 1)).

Promotional and demotional divergences can be
merged into the head switching macro-category.
They arise when a modifier in one language is pro-
moted to a main verb in the other, or vice versa,
e.g., John usually goes home is Juan suele ir a
casa (John is accustomed to go home) in Spanish.
XL-AMR correctly parses the sentence into (g / go-
01 :ARGO (p / person :name (n / Juan)) :ARG4 (h /
home) :mod (u / usual)).

A structural divergence exists when a verbal
object is realized as a noun phrase (NP) in one lan-
guage and as prepositional phrase (PP) in the other,
e.g., I saw John where John is NP, is translated
as Vi a Juan (I saw to John) in Spanish where a
Juan is PP. This also is not a problem for our parser,
which predicts the correct graph, (s / see-01 :ARGO
(i/1) :ARGI (p/ person :name (n / Juan))).

A conflational divergence refers to the transla-
tion of two or more words in one language into
one word in the other. The above errors in German
compounded words fall into this category and our
model does not handle them properly. However,
regarding other languages this problem is not com-
mon, e.g., I fear translates into lo ho paura (I have
fear) in Italian and the parser correctly predicts the
AMR graph, (f/ fear-01 :ARGO (i /1)).

A categorical divergence arises when the same
meaning is expressed by different syntactic cate-
gories across languages, e.g., [ agree, where agree
is a verb, is expressed by a noun in Italian and
Spanish, Sono d’accordo and Estoy de acuerdo.
The parser correctly predicts the same AMR for
both languages, (a / agree-01 :ARGO (i /D).

A lexical divergence arises when a verb in the
source language is translated with a different lexi-
cal verb, e.g., John broke into the room, Juan forzo
la entrada al cuarto, in which the verb break in
English is translated with the verb forzar (force)
in Spanish. XL-AMR predicts (f / force-01 :ARG0
(p / person :name (n / Juan)) :ARG2 (e / enter-01
:ARGO p :ARGI1 (r / room))) for the Spanish sen-
tence, which, even though it is correctly parsed,
does not overcome the lexical difference of the ac-
tion, which results in different AMR graphs for the
same meaning. This is partially due to the fact that
AMR is bounded to lexical forms in English.

In summary, XL-AMR overcomes most of the
foregoing structural divergences with the exception
of two cases: 1) the conflational divergence in Ger-
man, that is caused by the language’s compound
words vocabulary, for the resolution of which a bet-
ter preprocessing can be beneficial; ii) the lexical
divergence that persists despite the parser predict-
ing a valid graph. The latter divergence results in
non-parallel structures for parallel meanings, and
we believe this might be tackled by integrating a
unified ontology for synonyms or related meanings
within the AMR formalism, along the line of dis-
junctive AMR'? (Banarescu et al., 2013). We leave
exploration of this approach open for future work.

6 Conclusion

We explored transfer learning techniques to enable
high performance cross-lingual AMR parsing. We
created silver data based on annotation projection
through parallel sentences and machine translation,
on which we trained XL-AMR, a cross-lingual AMR
parser that achieves the highest results reported to
date on Chinese, German, Italian and Spanish. A
qualitative evaluation showed that XL-AMR is able
to handle most of the structural divergences among
languages. The performance of XL-AMR together
with the qualitative analysis suggests that carefully
modeling cross-lingual AMR parsing leads to the
production of suitable AMR structures across lan-
guages. It would therefore be promising to extend
this line of our research to exploit larger multilin-
gual semantic resources, in order to further improve
the parsing quality. These AMR representations
could then be integrated into downstream cross-
lingual tasks to investigate their added value.
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A Cross-Lingual AMR Pre- and
Postprocessing

English AMR parsers throughout the literature rely
on several pre- and postprocessing rules. We extend
these rules for the cross-lingual AMR parsing task
based on several multilingual resources.

Preprocessing This step consists of: i) lemma-
tization, ii) PoS-tagging, iii) NER, iv) re-cate-
gorization of entities and senses and v) removal
of wiki links and polarity attributes. As NLP
pipelines (steps i-iii) we use Stanford CoreNLP
(Manning et al., 2014) for English sentences, the
Stanza Toolkit (Qi et al., 2020) for Chinese, Ger-
man and Spanish sentences, and Tint'3 (Aprosio
and Moretti, 2016) for Italian. Re-categorization
and anonymization of entities is often used in En-
glish AMR parsing to reduce data sparsity (Zhang
etal., 2019; Lyu and Titov, 2018; Peng et al., 2017,
Konstas et al., 2017). Here we follow Konstas
et al. (2017); Zhang et al. (2019) and anonymize
entity subgraphs, which are identified by an AMR
entity type and the :name role. First, the en-
tity subgraphs are mapped with the corresponding
text span in the sentence and then the text span
is replaced with the anonymized token, i.e., EN—
TITY_TYPE_i. To match the entities in the AMR
graphs, which are tied to English, with the corre-
sponding text span in non-English sentences, we
first collect all the possible lexicalizations of the en-
tity in the target language using BabelNet 4.0 (Nav-
igli and Ponzetto, 2010), a multilingual semantic
network which brings together different resources
such as WordNet, Wikipedia, etc., each node of
which clusters together the lexicalizations that ex-
press the same concept in different languages. Then
we search for the possible text spans in the sen-
tence written in the target language. At test time,
we anonymize the text spans which have been iden-
tified during the training data preprocessing and
which are tagged by the NER tagger as entities.

Postprocessing This step consists of restoring
i) anonymized subgraphs, ii) wiki links, iii) senses
and iv) polarity attributes. The anonymized sub-
graphs are restored using the anonymized text

13Stanza does not provide a NER model for Italian.
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spans created during preprocessing. Then wiki
links are restored using the DBpedia Spotlight
API'# (Daiber et al., 2013), commonly used in
English AMR parsing (van Noord and Bos, 2017;
Zhang et al., 2019; Ge et al., 2019). It provides
models for multiple languages, except Chinese, for
which we use Babelfy (Moro et al., 2014). Since
the wiki links identified by DBpedia Spotlight API
are language-specific to the text, we further use
Wikipedia inter-language links to retrieve the corre-
sponding wiki links for the English entities. We re-
store senses as the most frequent sense of the pred-
icate in the training data (using -01 if unseen) simi-
lar to (Lyu and Titov, 2018; Zhang et al., 2019) and
finally restore polarity attributes based on heuristic
rules observed on the training data and linguistic
rules specific to each language (included in the
released code).

B OpusMT Translation Models

For the translation and back-translation steps of
GOLDAMR-SILVERTRNS data creation approach,
we use the pretrained models'” from the hugging-
face transformers library'® listed in Table 4.

Source  Target Model

English
English
English
German
Ttalian

Spanish

German
Italian

Spanish
English
English
English

Helsinki-NLP/opus-mt-de—en
Helsinki-NLP/opus-mt-it—-en
Helsinki-NLP/opus-mt-ROMANCE-en
Helsinki-NLP/opus-mt-en-de
Helsinki-NLP/opus-mt-en-it
Helsinki-NLP/opus-mt-en—-ROMANCE

Table 4: OpusMT translation models.

C Model Hyperparameters

The input features for all the models include:
i) fixed mBERT!? (Devlin et al., 2019) as con-
textual embeddings (dim = 768), ii) ConceptNet
Numberbatch 9.08'8 (Speer et al., 2017) multilin-
gual static word embeddings (dim = 300) which we
set as trainable except in ()-shot models, iii) train-
able PoS embeddings (dim = 100) where we use
the universal PoS-tags set by Petrov et al. (2012),
iv) trainable anonymization indicator embeddings

“github.com/dbpedia-spotlight/spotlight-docker.

]56-layer Transformer-based models (Vaswani et al., 2017).

"®huggingface.co/transformers/model_doc/marian.html

17bert—base—multilingual—cased:acontextual-
ized embedding for a token is calculated as the average pooling
of its subtoken embeddings.

8 github.com/commonsense/conceptnet-numberbatch

(dim = 50), v) trainable character-level embeddings
(dim = 100), i.e., CharCNN (Kim et al., 2016).

The encoder and decoder of the node prediction
module are composed of 2 layers of 512 and 1024
LSTM units each, respectively. All the models are
trained using Adam optimizer (Kingma and Ba,
2015) with learning rate 0.001, for 120 epochs and
the best model hyperparameters are chosen on the
basis of development set accuracy. The models are
trained using 1 GeForce GTX TITAN X GPU, full
training takes around 48 hours for models trained in
the largest dataset XL-AMR!%"$T (~84M trainable
parameters) and XL-AMRP?"+ (~86M trainable pa-
rameters). At prediction time we set the size of
beam search to 5.
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