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Abstract

Most modern NLP systems make use of pre-
trained contextual representations that attain
astonishingly high performance on a variety of
tasks. Such high performance should not be
possible unless some form of linguistic struc-
ture inheres in these representations, and a
wealth of research has sprung up on probing
for it. In this paper, we draw a distinction be-
tween intrinsic probing, which examines how
linguistic information is structured within a
representation, and the extrinsic probing pop-
ular in prior work, which only argues for the
presence of such information by showing that
it can be successfully extracted. To enable
intrinsic probing, we propose a novel frame-
work based on a decomposable multivariate
Gaussian probe that allows us to determine
whether the linguistic information in word em-
beddings is dispersed or focal. We then probe
fastText and BERT for various morphosyntac-
tic attributes across 36 languages. We find that
most attributes are reliably encoded by only
a few neurons, with fastText concentrating its
linguistic structure more than BERT.1

1 Introduction

Natural language processing (NLP) is enamored of
contextual word representations—and for good rea-
son! Contextual word-embedders, e.g. BERT (De-
vlin et al., 2019) and ELMo (Peters et al., 2018),
have bolstered NLP model performance on myr-
iad tasks, such as syntactic parsing (Kitaev et al.,
2019), coreference resolution (Joshi et al., 2019),
morphological tagging (Kondratyuk, 2019) and text
generation (Zellers et al., 2019). Given the large
empirical gains observed when they are employed,
it is all but certain that word representations derived
from neural networks encode some continuous ana-
logue of linguistic structures.

1Code and data are available at https://github.
com/rycolab/intrinsic-probing.
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Figure 1: Scatter plot of the two most informative
BERT dimensions for English present and past tense.
The contours belong to our probe.

Exactly what these representations encode about
linguistic structure, however, remains little under-
stood. Researchers have studied this question by
attributing function to specific network cells with
visualization methods (Karpathy et al., 2015; Li
et al., 2016) and by probing (Alain and Bengio,
2017; Belinkov and Glass, 2019), which seeks to
extract structure from the representations. Recent
work has probed various representations for cor-
relates of morphological (Belinkov et al., 2017;
Giulianelli et al., 2018), syntactic (Hupkes et al.,
2018; Zhang and Bowman, 2018; Hewitt and Man-
ning, 2019; Lin et al., 2019), and semantic (Kim
et al., 2019) structure.

Most current probing efforts focus on what we
term extrinsic probing, where the goal is to de-
termine whether the posited linguistic structure is
predictable from the learned representation. Gen-
erally, extrinsic probing works argue for the pres-
ence of linguistic structure by showing that it is ex-
tractable from the representations using a machine
learning model. In contrast, we focus on intrinsic
probing—whose goals are a proper superset of the

https://github.com/rycolab/intrinsic-probing
https://github.com/rycolab/intrinsic-probing
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goals of extrinsic probing. In intrinsic probing, one
seeks to determine not only whether a signature
of linguistic structure can be found, but also how
it is encoded in the representations. In short, we
aim to discover which particular “neurons” (a.k.a.
dimensions) in the representations correlate with
a given linguistic structure.Intrinsic probing also
has ancillary benefits that extrinsic probing lacks;
it can facilitate manual analyses of representations
and potentially yield a nuanced view about the in-
formation encoded by them.

The technical portion of our paper focuses on
developing a novel framework for intrinsic probing:
we scan sets of dimensions, or neurons, in a word
vector representation which activate when they cor-
relate with target linguistic properties. We show
that when intrinsically probing high-dimensional
representations, the present probing paradigm is
insufficient (§2). Current probes are too slow to
be used under our framework, which invariably
leads to low-resolution scans that can only look at
one or a few neurons at a time.Instead, we intro-
duce decomposable probes, which can be trained
once on the whole representation and henceforth
be used to scan any selection of neurons. To that
end, we describe one such probe that leverages
the multivariate Gaussian distribution’s inherent
decomposability, and evaluate its performance on
a large-scale, multi-lingual, morphosyntactic prob-
ing task (§3).

We experiment on 36 languages2 from the Uni-
versal Dependencies treebanks (Nivre et al., 2017).
We find that all the morphosyntactic features we
considered are encoded by a relatively small selec-
tion of neurons. In some cases, very few neurons
are needed; for instance, for multilingual BERT
English representations, we see that, with two neu-
rons, we can largely separate past and present tense
in Fig. 1. In this, our work is closest to Lakretz
et al. (2019), except that we extend the investiga-
tion beyond individual neurons—a move which is
only made tractable by decomposable probing. We
also provide analyses on morphological features
beyond number and tense. Across all languages,
35 out of 768 neurons on average suffice to reach
a reasonable amount of encoded information, and
adding more yields diminishing returns (see Fig. 2).
Interestingly, in our head-to-head comparison of
BERT and fastText, we find that fastText almost al-
ways encodes information about morphosyntactic

2See App. F for a list.

properties using fewer dimensions.

2 Probing through Dimension Selection

The goal of intrinsic probing is to reveal how
“knowledge” of a target linguistic property is struc-
tured within a neural network-derived representa-
tion. If said property can be predicted from the rep-
resentations, we expect that this is because the neu-
ral network encodes this property (Giulianelli et al.,
2018).We can then determine whether a probe re-
quires a large subset or a small subset of dimen-
sions to predict the target property reliably.3 Par-
ticularly small subsets could be used to manually
analyze a network and its decision process, and
potentially reveal something about how specific
neural architectures learn to encode linguistic in-
formation.

To formally describe our framework, we first
define the necessary notation. We consider the
probing of a word representation h ∈ Rd for mor-
phosyntax. In this work, our goal is find a subset
of dimensions C ⊆ D = {1, . . . , d} such that the
corresponding subvector of hC contains only the
dimensions that are necessary to predict the target
morphosyntactic property we are probing for. For
all possible subsets of dimensions C ⊆ D, and
some random variable Π that ranges over P prop-
erty values {π1, . . . , πP }, we consider a general
probabilistic probe: pθC (Π = π | hC); note that
the model is conditioned on hC , not on h. Our
goal is to select a subset of dimensions using the
log-likelihood of held-out data. We term this type
of probing dimension selection. One can express
dimension selection as the following combinatorial
optimization problem:

C? = argmax
C⊆D,
|C|≤k

N∑
n=1

log pθC (π(n) | h(n)
C ) (1)

where {(h(n)
C , π(n))}Nn=1 is a held-out dataset. Im-

portantly, for complicated models we will require a
different parameter set θC for each subset C ⊆ D.
In the general case, solving a subset selection prob-
lem such as eq. (1) is NP-Hard (Binshtok et al.,
2007). Indeed, without knowing more about the

3By analogy to the “distributed” and “focal” neural pro-
cesses in cognitive neuroscience (see e.g. Bouton et al. 2018),
an intrinsic framework also imparts us with the ability to for-
mulate much higher granularity hypotheses about whether
particular morphosyntactic attributes will be widely or focally
encoded in representations.



199

structure of pθC we would have to rely on enumer-
ation to solve this problem exactly. As there are(
d
k

)
possible subsets, it takes a prohibitively long

time to enumerate them all for even small d and k.

Greed is not Enough. A natural first approach
to approximate a solution to eq. (1) is a greedy
algorithm (Kleinberg and Tardos, 2005, Chapter
4). Such an algorithm chooses the dimension that
results in the largest increase to the objective at
every iteration. However, some probes, such as
neural network probes, need to be trained with a
gradient-based method for many epochs. In such a
case, even a greedy approximation is prohibitively
expensive. For example, to select the first dimen-
sion, we train d probes and take the best. To select
the second dimension, we train d − 1 probes and
take the best. This requires training O(dk) net-
works! In the case of BERT, we have d = 768
and we would generally like to consider k at least
up to 50. Training on the order of 38400 neural
models to probe for just one morphosyntactic prop-
erty is generally not practical. What we require
is a decomposable probe, which can be trained
once on all dimensions and then be used to evalu-
ate the log-likelihood of any subset of dimensions
in constant or near-constant time. To the best of
our knowledge, no probes in the literature exhibit
this property; the primary technical contribution of
the paper is the development of such a probe in §3.

Other Selection Criteria. Our exposition above
uses the log-likelihood of held-out data as a se-
lection criterion for a subset of dimensions; how-
ever, any function that scores a subset of dimen-
sions is suitable. For example, much of the current
probing literature relies on accuracy to evaluate
probes (Conneau et al., 2018; Liu et al., 2019, inter
alia), and two recent papers motivate a probabilistic
evaluation with information theory (Pimentel et al.,
2020b; Voita and Titov, 2020). One could select
based on accuracy, mutual information, or anything
else within our framework. In fact, recent work in
intrinsic probing by Dalvi et al. (2019) could be
recast into our framework if we chose a dimension
selection criterion based on the magnitude of the
weights of a linear probe. However, we suspect
that a performance-based dimension selection cri-
terion (e.g., log-likelihood) should be more robust
given that a weight-based approach is sensitive to
feature collinearity, variance and regularization. As
we mentioned before, performance-based selection

requires a probe to be decomposable, and to the
best of our knowledge, this is not the case for the
the linear probe of Dalvi et al. (2019).

3 A Decomposable Probe for
Morphosyntactic Properties

Using the framework introduced above, our goal
is to probe for morphosyntactic properties in word
representations. We first describe the multivari-
ate Gaussian distribution as it is responsible for
our probe’s decomposability (§3.1), and provide
some more notation (§3.2). We then describe our
model (§3.3) and a Bayesian formulation (§3.4).

3.1 Properties of the Gaussian
The multivariate Gaussian distribution is defined as

N (x | µ,Σ) = (2)

|2πΣ|−
1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
where µ is the mean of the distribution and Σ is
the covariance matrix. We review the multivariate
Gaussian with emphasis on the properties that make
it ideal for intrinsic morphosyntactic probing.

Firstly, it is decomposable. Given a multivariate
Gaussian distribution over x = [x1 x2]>

p(x) = N (x | µ,Σ) = (3)

N
([

x1

x2

] ∣∣∣ [µ1

µ2

]
,

[
Σ11 Σ12

Σ>12 Σ22

])
the marginals for x1 and x2 may be computed as

p(x1) = N (x1 | µ1,Σ11) (4)

p(x2) = N (x2 | µ2,Σ22) (5)

This means that if we know µ and Σ, we can ob-
tain the parameters for any subset of dimensions
of x by selecting the appropriate subvector (and
submatrix) of µ (Σ).4 As we will see in §3.3, this
property is the very centerpiece of our probe. Sec-
ondly, the Gaussian distribution is the maximum
entropy distribution over the reals given a finite
mean and covariance and no further information.
Thus, barring additional information, the Gaussian
is a good default choice. Jaynes (2003, Chapter
7) famously argued in favor of the Gaussian be-
cause it is the real-valued distribution with support
(−∞,∞) that makes the fewest assumptions about
the data (beyond its first two moments).

4The other variable, Σ12, is a matrix that contains the
covariances of each dimension of x1 with each dimension of
x2. We do not need it for our purposes.
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3.2 Notation for Morphosyntactic Probing
We now provide some notation for our mor-
phosyntactic probe. Let {h(1), . . . ,h(N)} be
word representation vectors in Rd for N words
{w(1), . . . , w(N)} from a corpus. For example,
these could be embeddings output by fastText (Bo-
janowski et al., 2017), or contextual representa-
tions according to ELMo (Peters et al., 2018) or
BERT (Devlin et al., 2019). Furthermore, let
{m(1), . . . ,m(N)} be the morphosyntactic tags as-
sociated with each of those words in the sentential
context in which they were found.5

Let A = {a1, . . . , a|A|} be a universal6 set
of morphosyntactic attributes in a language, e.g.
PERSON, TENSE, NUMBER, etc. For each at-
tribute a ∈ A, let Va be that attribute’s univer-
sal set of possible values. For instance, we have
VPERSON = {1, 2, 3} for most languages. For
this task, we will further decompose each mor-
phosyntactic tag as a set of attribute–value pairs
m(i) = 〈a1 =v1, . . . , a|m(i)|=v|m(i)|〉 where each
attribute aj is taken from the universal set of at-
tributesA, and each value vj is taken from a set Vaj
of universal values specific to that attribute. For ex-
ample, the morphosyntactic tag m for the English
verb “has” would be {PERSON = 3, NUMBER =
SG, TENSE = PRS}.

3.3 Our Decomposable Generative Probe
We now present our decomposable probabilistic
probe. We model the joint distribution between
embeddings and a specific attribute’s values

p(h, v) = p(h | v) p(v) (6)

where we define

p(h | v) = N (h | µv,Σv) (7)

where µv and Σv are the value-specific mean and
covariance. We further define

p(v) = Categorical (Va) (8)

This allows each value to have a different probabil-
ity of occurring. This is important since our probe
should be able to model that, e.g. the 3rd person

5Crucially, some words may have different morphosyntac-
tic tags depending on their context. For example, the number
attribute of “make” could be either singular (“I make”) or
plural (“They make”).

6“Universal” here refers to the set of all UniMorph di-
mensions and their possible features (Sylak-Glassman, 2016;
Kirov et al., 2018).

is more prevalent than the 1st person in corpora
derived from Wikipedia. We can then probe with

p(v | h) =
p(h, v)∑

v′∈Va p(h, v
′)

(9)

which can be computed quickly as |Va| is small.7

This model is also known as quadratic discrimi-
nant analysis (Murphy, 2012, Chapter 4).Another
interpretation of our model is that it amounts to
a generative classifier where, given some specific
morphosyntactic attribute, we first sample one of
its possible values v, and then sample an embed-
ding from a value-specific Gaussian. Compared
to a linear probe (e.g. Hewitt and Liang 2019),
whose decision boundary is linear for two values,
the decision boundary of this model generalizes
to conic sections, including parabolas, hyperbolas
and ellipses (Murphy, 2012, Chapter 4).

This formulation allows us to model the word
representations of each attribute’s value as a sepa-
rate Gaussian. Since the Gaussian distribution is de-
composable (§3.1), we can train a single model and
from it obtain a probe for any subset of dimensions
in O(1) time. To the best of our knowledge, no
other probes in the literature possess this desirable
property, which is what enables us to intrinsically
probe representations for morphosyntax.

3.4 Bayesically Done Now
All that is left now is to obtain the value-specific
Gaussian parameters θv = {µv,Σv}. Let
D(v) = {h(1),h(2), . . . ,h(Nv)} be a sample of d-
dimensional word representations for a value v for
some language. One simple approach is to use
maximum-likelihood estimation (MLE) to estimate
θv; this amounts to computing the empirical mean
and covariance matrix of D(v). However, in pre-
liminary experiments we found that a Bayesian
approach is advantageous since it precludes degen-
erate Gaussians when there are more dimensions
under consideration than training datapoints (Sri-
vastava et al., 2007).

Under the Bayesian framework, we seek to com-
pute the posterior distribution over the probe’s pa-
rameters given our training data,

p(θv | D(v)) ∝ p(θv)× p(D(v) | θv) (10)

where p(θv) is our Bayesian prior. The prior en-
codes our a priori belief about the parameters in

7UniMorph’s most varied attribute is CASE, with 32 values,
though most languages do not exhibit all of them.
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the absence of any data, and p(D(v) | θv) is the
likelihood of the data under our model given a
parameterization θv. In the case of a Gaussian–
inverse-Wishart prior,8

p(θv) = GIW(µv,Σv | µ0, k0,Λ0, ν0) (11)

= N (µv | µ0,
1

k0
Σv)× IW(Σv | Λ0, ν0)

there is an exact expression for the posterior. The
GIW prior has hyperparameters µ0, k0,Λ0, ν0,
where the inverse-Wishart distribution (IW, see
App. B) defines a distribution over covariance ma-
trices (Murphy, 2012, Chapter 4), and the Gaussian
defines a distribution over the mean. As this prior is
conjugate to the multivariate Gaussian distribution,
our posterior over the parameters after observing
D(v) will also have a Gaussian–inverse-Wishart
distribution, GIW(µv,Σv | µn, kn,Λn, νn), with
known parameters (see App. A).

We did not perform full Bayesian inference as
we found a maximum a posteriori (MAP) estimate
to be sufficient for our purposes.9 MAP estimation
uses the parameters at the posterior mode

θ?v = argmax
θv

p(θv | D(v)) (12)

= argmax
µv ,Σv

GIW(µv,Σv | µn, kn,Λn, νn)

which are (Murphy, 2012, Chapter 4)

µ?v = µn (13)

Σ?
v =

1

νn + d+ 2
Λn (14)

where d is the dimensionality of the Gaussian.

4 Probing Metrics

In this section, we describe the metrics that we
compute. We track both accuracy (§4.1) and mutual
information (§4.2).

4.1 Accuracy
As with most probes in the literature, we compute
the accuracy of our model on held-out data. We
report the lower-bound accuracy (LBA) of a set of
dimensions C, which is defined as the highest accu-
racy achieved by any subset of dimensions C ′ ⊆ C.
This metric counteracts a decrease in performance

8Also known as a Normal–inverse-Wishart prior.
9The posterior predictive of this model is a Student’s t-

distribution (Murphy, 2007). Future work will explore a fully
Bayesian implementation.

due to the model overfitting in certain dimensions.
In principle, if a model was able to achieve a higher
score using fewer dimensions, then there exists a
model that can be at least as effective using a su-
perset of those dimensions.

Despite its popularity, accuracy also has its
downsides. In particular, we found it to be mis-
leading when not taking a majority-class baseline
into account, which complicates comparisons. For
example, in fastText and BERT Latin (lat), our
probe achieved slightly over 65% accuracy when
averaging over attributes. This appears to be high,
but 65% is the average majority-class baseline ac-
curacy. Conversely, LBNMI (see §4.2) is roughly
zero, which more intuitively reflects performance.
Hence, we prioritize mutual information in our
analysis.

4.2 Mutual Information

Recent work has advocated for information-
theoretic metrics in probing (Voita and Titov, 2020;
Pimentel et al., 2020b). One such metric, mutual
information (MI), measures how predictable the oc-
currence of one random variable is given another.

We estimate the MI between representations and
particular attributes using a method similar to the
one proposed by Pimentel et al. (2019) (refer to
App. D for an extended derivation). Let Va be a
Va-valued random variable denoting the value of a
morphosyntactic attribute, and H be a Rd-valued
random variable for the word representation.

The mutual information between Va and H is

MI(Va;H) = H(Va)−H(Va | H) (15)

The attribute’s entropy, H(Va), depends on the true
distribution over values p(v). For this, we use the
plug-in approximation p(v), which is estimated
from held-out data.The conditional entropy, H(Va |
H) is trickier to compute, as it also depends on
the true distribution of embeddings given a value,
p(h | v), which is high-dimensional and poorly
sampled in our data.10 However, we can obtain
an upper-bound if we use our probe p(v | h) and

10When considering few dimensions in h this can be es-
timated, e.g. by binning. However, we cannot rely on such
estimates for intrinsic probing in general.
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compute (Brown et al., 1992)

H(Va | H) ≤ Hp(Va | H) (16)

= −
∑
v∈Va

p(v)

∫
p(h | v) log2 p(v | h) dh

≈ − 1

N

N∑
n=1

log2 p(ṽ
(n) | h̃(n)

) (17)

using held-out data, D̃ = {(h̃(n)
, ṽ(n))}Nn=1. Inci-

dentally, this is equivalent to computing the average
negative log-likelihood of the probe on held-out
data. Using these estimates in eq. (15), we obtain
an empirical lower-bound on the MI.

For ease of comparison across languages and
morphosyntactic attributes, we define two metrics
associated to MI. The lower-bound MI (LBMI) of
any set of neurons C is defined as the highest MI
estimate obtained by any subset of those neurons
C ′ ⊆ C. While true MI can never decrease upon
adding a variable, our estimate may decrease due
to overfitting in our model, or by it being unable
to capture the complexity of p(h | v). LBMI of-
fers a way to counteract this limitation by using
the very best estimate at our disposal for any set
of dimensions. In practice, we report lower-bound
normalized MI (LBNMI), which normalizes LBMI
by the entropy of Va, because normalizing MI esti-
mates drawn from different samples enables them
to be compared (Gates et al., 2019).

5 Experimental Setup

In this section we outline our experimental setup.

Selection Criterion. We use log-likelihood as
our greedy selection criterion. We select 50 di-
mensions, and keep selecting even if the estimate
has decreased.11

Data. We map the UD v2.1 treebanks (Nivre
et al., 2017) to the UniMorph schema (Kirov et al.,
2018; Sylak-Glassman, 2016) using the mapping
by McCarthy et al. (2018). We keep only the “main”
treebank for a language (e.g. UD_Portuguese as
opposed to UD_Portuguese_PUD). We remove
any sentences that would have a sub-token length
greater than 512, the maximum allowed for our

11Log-likelihood, unlike accuracy, is sensitive to confident
but incorrect estimates. We found that this change allowed
us to keep selecting dimensions that increase accuracy but de-
crease log-likelihood, as they may be informative but contain
some noise or outliers.

BERT model.12 We assign any tags from the con-
stituents of a contraction to the contracted word
form (e.g., for Portuguese, we copy annotations
from de and a to the contracted word form da).
We use the UD train split to train a probe for each
attribute, the validation split to choose which di-
mensions to select using our greedy scheme, and
the test split to evaluate the performance of the
probe after dimension selection.

We do not include in our estimates any morpho-
logical attribute–value pairs with fewer than 100
word types in any of our splits, as we might not be
able to model or evaluate them accurately. This re-
moves certain constructions that mostly pertain to
function words (e.g. as definiteness is marked only
in articles in Portuguese, the attribute is dropped),
but we found it also removed rare inflected forms
in our data, which may be due to inherent biases in
the domain of text found in the treebanks (e.g. the
future tense in Spanish). We use all the words that
have been tagged in one of the filtered attribute–
value pairs (this includes both function and con-
tent words). Finally, we apply some minor post-
processing to the annotations (App. C).

Word Representations. We probe the multilin-
gual fastText vectors,13 and the final layer of the
multilingual release of BERT.14 We compute word-
level embeddings for BERT by averaging over sub-
token representations as in Pimentel et al. (2020b).
We use the tokenization in the UD treebanks.

Hyperparameters. Our model has four hyper-
parameters, which control the Gaussian–inverse-
Wishart prior. We choose hyperparameter settings
that have been shown to work well in the litera-
ture (Fraley and Raftery, 2007; Murphy, 2012). We
set µ0 to the empirical mean, Λ0 to a diagonalized
version of the empirical covariance, ν0 = d + 2,
and k0 = 0.01. We note that the resulting prior is
degenerate if the data contains only one datapoint,
since the covariance is not well-defined. However,
since we do not consider attribute–values with less
that 100 word types, this does not affect our experi-
ments.

6 Results and Discussion

Overall, our results strongly suggest that mor-
phosyntactic information tends to be highly focal

12Out of a total of 419943 sentences in the treebanks, 4
were removed.

13We use the implementation by Grave et al. (2018).
14We use the implementation by Wolf et al. (2020).



203

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
LB

A

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Dimensions Selected

LB
N

M
I

Figure 2: The average lower-bound accuracy (LBA)
and lower-bound normalized mutual information (LB-
NMI) across all evaluated attributes and languages for
fastText and BERT.

(concentrated in a small set of dimensions) in fast-
Text, whereas in BERT it is more dispersed. Aver-
aging across all languages and attributes (Fig. 2),
fastText has on average 0.306 LBNMI at two di-
mensions, which is around twice as much as BERT
at the same dimensionality. However, the dif-
ference between the two becomes progressively
smaller, reducing to 0.053 at 50 dimensions. A
similar trend holds for LBA (§4.1), with an even
smaller difference at higher dimensions. On the
whole, roughly 10 dimensions are required to en-
code any morphosyntactic attribute we probed fast-
Text for, compared to around 35 dimensions for
BERT.

The pattern above holds across attributes (Fig. 3),
and languages (Fig. 4). There is little improvement
in fastText performance when adding more than 10
dimensions and, in some cases, two fastText dimen-
sions can explain half of the information achieved
when selecting 50. In contrast, while BERT also
displays highly informative dimensions, a substan-
tial increase in LBNMI can be obtained by going
from 2 selected dimensions to 10 and 50. Among
languages, the only exceptions to this are the Indic
languages, where BERT concentrates more mor-
phological information than fastText already at 2 di-
mensions. Interestingly, when looking at attributes,
our results suggest that fastText encodes most at-
tributes better than BERT (when considering the

0 0.2 0.4 0.6 0.8 1

LBNMI

Animacy
Aspect
Case

Definiteness
Gender
Number
Person
Tense
Voice

Figure 3: Comparison of per-attribute average lower-
bound normalized mutual information (LBNMI) for
fastText and BERT. Each bar is broken up into three
components, which denote the LBNMI after selecting
2, 10 and 50 dimensions.

50 most informative dimensions), except animacy,
gender and number. These findings also hold for
LBA, where we additionally find little to no gain
when comparing LBA after 50 dimensions to accu-
racy on the full vector.

Visualizing the most informative dimensions for
BERT and fastText may give some intuition for
how this trend manifests. Fig. 5 shows a scatter
plot of the two most informative dimensions se-
lected by our probe for English tense in fastText
and BERT. We observed similar patterns for other
morphosyntactic attributes. Both embeddings have
dimensions that induce some separability in En-
glish tense, but this is more pronounced in fastText
than BERT. We cannot clearly plot more than two
dimensions at a time, but based on the trend de-
picted in Fig. 2, we can intuit that BERT makes
up for at least part of the gap by inducing more
separability as dimensions are added.

6.1 Limitations

The generative nature of our probe means that
adequately modeling the embedding distribution
p(h | v) is of paramount importance. We choose
a Gaussian model in order to assume as little as
possible about the distribution of BERT and fast-
Text embeddings; however, as one reviewer pointed
out, the embedding distribution is unlikely to be
Gaussian (see Fig. 6 for an example). This re-
sults in a looser bound on the mutual information
for dimensions in which the Gaussian assumption
does not hold, which leads to decreasing mutual
information estimates after a certain number of di-
mensions are selected (see Fig. 7). As we compute
and report an empirical lower-bound on the mutual
information for any subset of dimensions (LBMI),
we have evidence that there is at least that amount
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Figure 4: Comparison of per-language average lower-
bound normalized mutual information (LBNMI) for
fastText and BERT. Each bar is broken up into three
components, which denote the LBNMI after selecting
2, 10 and 50 dimensions.

of information for any given subset of dimensions.
However, we expect that better modeling of the
embedding distribution should improve our bound
on the mutual information and thus yield a better
probe (Pimentel et al., 2020b).

7 Related Work

There has been a growing interest in understand-
ing what information is in NLP models’ internal
representations. Studies vary widely, from de-
tailed analyses of particular scenarios and linguis-
tic phenomena (Linzen et al., 2016; Gulordava
et al., 2018; Ravfogel et al., 2018; Krasnowska-
Kieraś and Wróblewska, 2019; Wallace et al., 2019;
Warstadt et al., 2019; Sorodoc et al., 2020) to exten-
sive investigations across a wealth of tasks (Tenney
et al., 2018; Conneau et al., 2018; Liu et al., 2019).
A plethora of methods have been designed and
applied (e.g. Li et al., 2016; Saphra and Lopez,
2019; Jumelet et al., 2019) to answer this ques-
tion. Probing (Adi et al., 2017; Hupkes et al., 2018;
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Figure 5: Scatter graph of two most informative fast-
Text (above) and BERT (below) dimensions for English
present and past tense. Contours belong to our probe.

Conneau et al., 2018) is one prominent method,
which consists of using a lightly parameterized
model to predict linguistic phenomena from in-
termediate representations, albeit recent work has
raised concerns on how model parameterization
and evaluation metrics may affect the effectiveness
of this approach (Hewitt and Liang, 2019; Pimentel
et al., 2020b; Maudslay et al., 2020; Pimentel et al.,
2020a).

Most work in intrinsic probing has focused in the
identification of individual neurons that are impor-
tant for a task (Li et al., 2016; Kádár et al., 2017; Li
et al., 2017; Lakretz et al., 2019). Similarly, Clark
et al. (2019) and Voita et al. (2019) use probing
to analyze BERT’s attention heads, finding some
interpretable heads that attend to positional and syn-
tactic features. However, there has also been some
work investigating collections of neurons. For ex-
ample, Shi et al. (2016) observe that different train-
ing objectives can affect how focal an intermediate
representation is. Recently, Dalvi et al. (2019) use
the magnitude of the weights learned by a linear
probe as a proxy for dimension informativeness,



205

−0.4 −0.2 0 0.2 0.4 0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Dimension 211

D
im

en
si

on
 8

0

Figure 6: Two fastText dimensions that are informa-
tive for Portuguese number, but which do not appear
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ing p(h | v) with a Gaussian–Cauchy mixture model.

and find dispersion varies depending on linguis-
tic category. Bau et al. (2019) use unsupervised
methods to find neurons that are correlated across
various models, quantify said correlation, and upon
manual analysis find interpretable neurons. In con-
current work in computer vision, Bau et al. (2020)
identify units whose local, peak activations corre-
late with features in an image (e.g., material, door
presence), show that ablation of these units has a
disproportionately big impact on the classification
of their respective features, and can be manually
controlled, with interpretable effects.

Most similar to our analysis is LIN-
SPECTOR (Şahin et al., 2020), a suite of
probing tasks that includes probing for morphosyn-
tax. Our work differs in two respects. Firstly,
whereas LINSPECTOR focuses on extrinsic prob-
ing, we probe intrinsically. Secondly, the scope of
our morphosyntactic study is more typologically
diverse (36 vs. 5 languages), albeit they consider
more varieties of word representations, such as
GloVe (Pennington et al., 2014) and ELMo (Peters
et al., 2018)—but not BERT.

8 Conclusion

In this paper, we introduce an alternative frame-
work for intrinsic probing, which we term dimen-
sion selection. The idea is to use probe perfor-
mance on different subsets of dimensions as a
gauge for how much information about a linguistic
property different subsets of dimensions jointly en-
code. We show that current probes are unsuitable
for intrinsic probing through dimension selection
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Figure 7: Plot of LBNMI (. . . . . . .dotted) and normalized
MI (solid) curves for case in 5 randomly selected lan-
guages. Note that the y-axis ranges from 0–0.5 unlike
other graphs. Observe how the normalized MI esti-
mates start to decrease after a certain number of dimen-
sion have been selected.

as they are not inherently decomposable, which is
required to make the procedure computationally
tractable. Therefore, we present a decomposable
probe which is based on the Gaussian distribution,
and evaluate its effectiveness by probing BERT
and fastText for morphosyntax across 36 languages.
Overall, we find that fastText is more focal than
BERT, requiring fewer dimensions to capture most
of the information pertaining to a morphosyntactic
property.

Future Work. Future work will be separated into
two strands. The first will focus on how to better
model the distribution of embeddings given a mor-
phosyntactic attribute; as mentioned above, this
should yield a better probe overall. The second
strand of work pertains to a deeper analysis of our
results, and expansion to other probing tasks.
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A Gaussian–inverse-Wishart Posterior
Parameters

Using the notation introduced in §3.4, the pa-
rameters of the Gaussian–inverse-Wishart distribu-
tion GIW(µv,Σv | µn, kn,Λn, νn), are (Murphy,
2012)

µn =
k0µ0 +Nvh̄

kn
(18)

kn = k0 +Nv (19)

νn = ν0 +Nv (20)

Λn = Λ0 + S (21)

+
Nvk0

Nv + k0
(h̄− µ0)(h̄− µ0)>

where h̄ is the empirical mean of D(v) and S is the
scatter matrix

S =

Nv∑
i=1

(h(i) − h̄)(h(i) − h̄)> (22)

B Inverse-Wishart Distribution

The inverse-Wishart distribution is defined as (Mur-
phy, 2007)

IW(Σ |Λ−1, ν) =
1

Z
|Σ|−

ν+d+1
2

× exp

(
−1

2
Tr(ΛΣ−1)

)
(23)

where

Z =
|Λ|

ν
2

2
νd
2 Γd(

ν
2 )

(24)

where Σ is a positive-definite d× d matrix, and Γd
is the multivariate Gamma function.

C Changes to UD Annotations

We apply some post-processing to canonicalize
the automatically-converted UniMorph annotations.
The changes we make are:

1. We remove any annotations with disjunc-
tions. These constitute a minority of annota-
tions, and handling them adequately requires
language-specific knowledge.

2. We fix some annotations that we believe are
typos, e.g. replace “{CMPR}” with “CMPR”.

3. We let “PST+PRF” be a Tense annotation.
This is a recurrent annotation in Latin, Ro-
manian and Turkish.
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4. We canonicalize conjunctive features by
sorting them alphabetically, ensuring they
all belong to the same morphological at-
tribute, and joining them into a new feature.
So the annotation “MASC+FEM” becomes
“FEM+MASC”.

5. We discard language-specific annotations as
this is not a canonical UniMorph dimension.

D Mutual Information Approximation

Let Va be a Va-valued random variable denoting
the value of a morphosyntactic attribute, and H be
a Rd-valued random variable for the word repre-
sentation. The mutual information between Va and
H is

MI(Va;H) = H(Va)−H(Va | H) (25)

To compute the entropy H(Va), we would ide-
ally need the true attribute distribution p(v) for a
language. We can empirically approximate it using
p(v), which has been computed from held-out data

H(Va) =
∑
v∈Va

p(v) log2

1

p(v)
(26)

≈
∑
v∈Va

p(v) log2

1

p(v)
(27)

Computing H(Va | H) is trickier as it relies on
the true distribution of the representations for a
value, p(h | v), which is hard to estimate as it is
high-dimensional and poorly sampled in our data.

H(Va | H) (28)

=

∫ ∑
v∈Va

p(v,h) log2

1

p(v | h)
dh

=
∑
v∈Va

p(v)

∫
p(h | v) log2

1

p(v | h)
dh

Note that by using an approximation p(v | h) ≈
p(v | h) instead (a.k.a. our probe), we ob-
tain an upper bound on the true conditional en-
tropy (Brown et al., 1992)

H(Va | H) ≤ Hp(Va | H) (29)

=
∑
v∈Va

p(v)

∫
p(h | v) log2

1

p(v | h)
dh︸ ︷︷ ︸

Iv

While p(v) ≈ p(v) should be reasonable for our
purposes, the integral Iv is intractable as it still

depends on p(h | v). However, we can use held-
out data to approximate Iv (Pimentel et al., 2019)

Iv = −
∫
p(h | v) log2 p(v | h) dh (30)

≈ − 1

Nv

Nv∑
i=1

log2 p(v | h̃
(i)

) (31)

where {h̃(i)}Nvi=1 are held-out word representations
for a value v, and thus obtain an empirical upper-
bound on H(Va | H).

E Reproducibility Details

All experiments were run on an AWS p2.xlarge
instance, with 1 Tesla K80 GPU, 4 CPU cores, and
61 GB of RAM. The total runtime of the experi-
ments was 2 days, 18 hours, 42 minutes and 14
seconds.

In total, when considering a d-dimensional word
representation, this model has

|Va|
(
d(d+ 1)

2
+ d

)
︸ ︷︷ ︸

Gaussians

+ (|Va| − 1)︸ ︷︷ ︸
Categorical

(32)

parameters. In practice, this means that for every
value, a fastText Gaussian we fit has 45450 pa-
rameters, whereas a BERT Gaussian has 296064
parameters.

F Probed Attributes by Language

Tab. 1 shows a list of all languages that were probed,
which attributes were probed, and which values
were considered. The number of example words
for a value in the train/validation/test split is shown
in parenthesis.
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Table 1: Table of attributes that were probed for each language, and the values that were considered for that
attribute. The number of example words for a value in the train/validation/test split is shown in parenthesis.

Language Attribute Values

afr (Afrikaans) Number PL (2682/399/1067), SG (6390/999/1656)

ara (Arabic) Number PL (18193/2282/2411), SG (97436/12692/12451)
Gender and Noun Class FEM (22104/2666/2842), MASC (27953/3982/3639)
Mood IND (6452/832/774), SBJV (1021/157/135)
Aspect IPFV (7986/1050/999), PFV (8951/1292/1226)
Voice ACT (16039/2169/2081), PASS (898/173/144)
Case ACC (21975/2951/2857), GEN (70767/8920/9137), NOM

(13901/1859/1668)
Definiteness DEF (47204/5785/6077), INDF (21122/3004/2668)

bel (Belarusian) Case GEN (912/336/262), NOM (673/174/171)
Gender and Noun Class FEM (910/270/194), MASC (1059/344/351)
Number PL (781/259/212), SG (2208/639/615)

bul (Bulgarian) Gender and Noun Class FEM (16442/2142/2119), MASC (21236/2614/2650),
NEUT (9292/1271/1214)

Number PL (18973/2443/2371), SG (49940/6427/6388)
Definiteness DEF (15310/1939/1942), INDF (33516/4340/4232)
Tense PRS (10781/1405/1330), PST (5373/677/716)
Person 1 (2548/353/345), 3 (14882/1885/1824)
Voice ACT (1885/239/222), PASS (1625/221/204)

cat (Catalan) Gender and Noun Class FEM (66961/9409/9368), MASC (85011/11313/11473)
Number PL (54636/7105/7314), SG (150183/20733/20682)
Mood IND (27555/3678/3662), SBJV (2070/303/252)
Tense FUT (3005/319/405), PRS (25110/3347/3347), PST (8398/

1236/1040)

ces (Czech) Case ACC (140691/19275/20747), DAT (31793/4458/4605),
ESS (104763/14467/15519), GEN (176912/23678/25261),
INS (53879/7312/8282), NOM (158994/21358/23042)

Gender and Noun Class FEM (88003/11924/13173), MASC (137896/18345/
19153), NEUT (44566/6295/6682)

Comparison CMPR (6134/826/908), RL (3199/442/494)
Number PL (180092/24725/26325), SG (459202/62398/67686)
Person 1 (12691/1993/2293), 2 (1973/342/471), 3 (68973/9461/

10390)
Aspect IPFV (41460/5706/6268), PFV (29944/4151/4408)
Tense PRS (64246/8849/10059), PST (44390/6089/6523)
Polarity NEG (16126/2172/2361), POS (86217/11270/12221)
Animacy ANIM (55084/7179/7543), INAN (62155/8469/8955)
Voice ACT (3549/410/539), PASS (7426/1044/1056)

dan (Danish) Gender and Noun Class FEM+MASC (16075/2045/1981), NEUT (7294/964/872)
Definiteness DEF (5218/664/655), INDF (14149/1867/1682)
Number PL (7332/1050/909), SG (21782/2784/2639)
Tense PRS (5806/753/679), PST (4017/575/604)

deu (German) Number PL (17392/1009/1259), SG (78706/3789/4698)

(Continued next page)
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Language Attribute Values

Case ACC (20352/1243/1480), DAT (29961/1150/1694), GEN
(5675/195/314), NOM (28192/1528/1729)

eng (English) Number PL (12599/1376/1364), SG (55978/7192/7266)
Tense PRS (8129/1063/940), PST (9359/996/981)

est (Estonian) Case ABL+IN (1383/155/169), ALL+AT (1299/154/175),
ALL+IN (1451/166/188), AT+ESS (1813/241/221), COM
(1011/131/129), ESS+IN (1757/210/215), GEN (8808/
1081/1132), NOM (13955/1727/1683), PRT (5022/572/
628)

Number PL (8434/1052/1001), SG (38059/4655/4801)
Finiteness FIN (11753/1462/1501), NFIN (1306/181/170)
Tense PRS (5633/670/680), PST (6734/894/856)
Person 1 (2240/252/312), 3 (9058/1175/1144)

eus (Basque) Case ABL+AT (532/163/187), ABS (10459/3457/3465),
ALL+AT (514/181/169), COM (383/128/148), DAT (745/
232/239), ERG (2670/859/873), ESS (3148/977/1024),
ESS+IN (3408/1167/1180), GEN (2334/763/806), INS
(633/235/203), PRT (420/135/162)

Animacy ANIM (778/274/236), INAN (7269/2375/2521)
Definiteness DEF (19134/6315/6336), INDF (3688/1244/1224)
Number PL (4162/1393/1376), SG (15257/5017/5057)
Aspect IPFV (1062/363/395), PFV (3476/1149/1140), PROG

(2937/914/967), PROSP (953/297/279)

fas (Persian) Number PL (11152/1250/1327), SG (50635/7040/7105)

fin (Finnish) Number PL (21315/2356/2878), SG (79259/8978/9967)
Case ABL+IN (4204/487/531), ALL+AT (1909/236/254),

ALL+IN (5014/539/616), AT+ESS (3310/375/384),
ESS+IN (5508/600/661), FRML (1974/214/261), GEN
(20002/2299/2490), NOM (25818/2905/3252), PRT
(12638/1404/1709), TRANS (1206/111/139)

Voice ACT (23469/2626/3082), PASS (4179/505/542)
Tense PRS (11149/1314/1732), PST (9039/980/958)
Person 1 (3104/363/412), 3 (15218/1746/2007)

fra (French) Gender and Noun Class FEM (63408/6471/1623), MASC (81523/8352/2439)
Number PL (41157/4146/1286), SG (131994/13416/3681)
Tense PRS (19256/1864/589), PST (14020/1382/343)

gle (Irish) Gender and Noun Class FEM (327/1240/1158), MASC (690/2188/2208)
Number PL (177/752/594), SG (1181/3841/3841)

heb (Hebrew) Definiteness DEF (2184/174/156), INDF (21817/1812/2069)
Number PL (14478/1328/1280), SG (38263/3182/3650)

hin (Hindi) Number PL (24553/3049/2932), SG (149419/18658/19128)
Case ACC (79132/9903/10138), NOM (66735/8392/8437)
Gender and Noun Class FEM (43951/5496/5686), MASC (104389/13116/13253)

hrv (Croatian) Gender and Noun Class FEM (31053/3094/2468), MASC (41905/3285/3084),
NEUT (12411/921/1070)

(Continued next page)
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Language Attribute Values

Number PL (27716/2672/2583), SG (74308/5976/5357)
Case ACC (22562/2038/1721), DAT (2332/197/171), ESS

(14876/1335/1182), GEN (27281/2552/2163), INS (5388/
366/398), NOM (26435/2125/2046)

Tense PRS (15665/1298/1299), PST (6537/509/436)
Finiteness FIN (16468/1349/1326), NFIN (3331/288/273)

hun (Hungarian) Definiteness DEF (2885/1770/1524), INDF (1307/577/619)
Number PL (1516/850/744), SG (9948/5853/5223)
Case ACC (935/541/484), ALL+ON (248/162/157), ESS+IN

(478/248/242), INS (218/198/155), NOM (6492/3910/
3352)

Possession PSS3S (1139/775/652), PSSD (5676/2779/2353)
Tense PRS (956/513/369), PST (795/357/533)

ita (Italian) Gender and Noun Class FEM (44923/1947/1713), MASC (59063/2613/2265)
Number PL (38689/1739/1321), SG (95035/4138/3843)
Tense PRS (15854/693/620), PST (11200/491/432)

lat (Latin) Number PL (1237/2086/1757), SG (3726/4029/4883)
Case ABL+AT (944/1150/999), ACC (1369/1545/1813), DAT

(231/306/270), GEN (492/451/324), NOM (809/1353/
1436)

Gender and Noun Class FEM (517/721/621), MASC (912/1187/1150), NEUT (378/
570/525)

Person 1 (179/166/324), 3 (837/892/1232)
Tense PRS (694/1020/1224), PST (815/764/1047)
Mood IND (868/939/1431), SBJV (212/255/270)
Aspect IPFV (138/209/246), PFV (689/567/814)

lav (Latvian) Case ACC (5729/1113/1139), DAT (2999/622/610), ESS (3148/
619/704), GEN (7251/1343/1311), NOM (10222/2257/
2300)

Number PL (8157/1494/1678), SG (21128/4474/4517)
Gender and Noun Class FEM (5243/987/1029), MASC (6252/1276/1319)
Tense PRS (4629/838/1129), PST (3673/1015/749)
Person 1 (1539/436/450), 3 (6449/1368/1332)

lit (Lithuanian) Case GEN (356/153/150), NOM (504/164/152)
Gender and Noun Class FEM (496/162/159), MASC (805/282/296)
Number PL (459/180/215), SG (1176/373/342)

nld (Dutch) Number PL (10797/615/793), SG (42640/2850/2609)
Finiteness FIN (17418/1023/903), NFIN (5213/242/407)
Gender and Noun Class FEM+MASC (18298/1316/1225), NEUT (10238/687/690)

pol (Polish) Case ACC (7083/1188/1278), ESS (5790/859/876), GEN
(10429/1663/1773), INS (2616/502/463), NOM (7575/
1228/1268)

Number PL (9871/1491/1573), SG (25225/4242/4454)
Gender and Noun Class FEM (4083/678/755), MASC (7858/1306/1380), NEUT

(2416/371/409)
Animacy HUM (4285/663/755), INAN (1641/268/309)

(Continued next page)
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Language Attribute Values

Tense PRS (3823/634/660), PST (3547/621/645)
Person 1 (1501/261/332), 3 (3725/613/603)

por (Portuguese) Number PL (27002/1366/1299), SG (92097/5125/4723)
Gender and Noun Class FEM (40907/2138/2107), MASC (57079/3154/2850)
Tense PRS (8438/512/466), PST (9107/470/449)

ron (Romanian) Definiteness DEF (24561/2326/2199), INDF (33780/3142/2992)
Number PL (28550/2558/2430), SG (66435/6248/6013)
Mood IND (11099/1000/975), SBJV (3623/390/329)
Gender and Noun Class FEM (17544/1687/1510), MASC (14229/1315/1333)

rus (Russian) Animacy ANIM (7032/1184/1156), INAN (32548/5037/4869)
Case ACC (5262/831/834), DAT (1732/207/248), ESS (5066/

751/807), GEN (13687/2201/2089), INS (3041/452/428),
NOM (12342/2017/1831)

Gender and Noun Class FEM (11145/1842/1762), MASC (21073/3360/3309),
NEUT (6774/961/953)

Number PL (9691/1432/1413), SG (34647/5518/5385)
Tense PRS (1870/293/275), PST (4227/631/677)
Aspect IPFV (3978/602/619), PFV (3133/481/498)
Voice MID (1326/192/208), PASS (1125/178/173)

slk (Slovak) Gender and Noun Class FEM (14217/2249/2566), MASC (17129/3838/3450),
NEUT (6817/992/1306)

Number PL (8989/1635/2013), SG (36266/5750/5840)
Case ACC (9651/1392/1466), DAT (2031/328/271), ESS (5062/

1203/1151), GEN (7228/1867/1998), INS (3108/699/698),
NOM (10605/1869/2131)

Tense PRS (4926/282/491), PST (8271/950/823)
Aspect IPFV (8561/705/898), PFV (6003/608/524)
Animacy ANIM (8769/2069/1401), INAN (8360/1769/2049)

slv (Slovenian) Case ACC (13762/1794/1709), DAT (2219/236/257), ESS
(10546/1448/1273), GEN (12424/1667/1545), INS (4713/
673/630), NOM (13405/1615/1730)

Gender and Noun Class FEM (9549/1149/1231), MASC (13512/1642/1626),
NEUT (4732/597/610)

Number PL (18042/2692/2286), SG (44944/5221/5650)
Person 1 (2120/275/253), 3 (11322/1247/1485)
Finiteness FIN (12361/1474/1568), NFIN (1083/163/146)
Aspect IPFV (4774/580/649), PFV (5233/602/623)

spa (Spanish) Number PL (47382/4347/1471), SG (139165/13604/4494)
Gender and Noun Class FEM (60665/5724/1857), MASC (79816/7849/2522)
Tense PRS (16120/1520/644), PST (13814/1336/381)

srp (Serbian) Number PL (10057/1606/1754), SG (31875/4781/5141)
Gender and Noun Class FEM (12944/1928/2193), MASC (17331/2597/2793),

NEUT (4187/621/626)
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Case ACC (8294/1329/1407), DAT (866/126/163), ESS (5804/
882/1038), GEN (10910/1547/1745), INS (2029/262/261),
NOM (11456/1748/1816)

swe (Swedish) Gender and Noun Class FEM+MASC (4813/757/1403), NEUT (2730/457/840)
Number PL (8110/1254/2721), SG (18229/2638/5248)
Definiteness DEF (10447/1775/3192), INDF (17005/2321/5116)

tur (Turkish) Case ABL+AT (709/175/183), ACC (1688/428/451), DAT
(1837/436/489), ESS (1415/361/359), GEN (1540/380/
385), INS (515/139/123), NOM (8690/2288/2362)

Aspect IPFV (722/232/214), PFV (6156/1589/1671), PROG (887/
248/225)

Person 1 (1433/392/348), 2 (624/189/147), 3 (7013/1867/1880)
Tense PRS (3563/945/963), PST (2941/733/757)
Number PL (2737/687/729), SG (16222/4262/4283)
Possession PSS1S (531/126/141), PSS3S (4035/982/1053)
Polarity NEG (782/227/237), POS (6410/1694/1713)

ukr (Ukrainian) Case ACC (8908/1196/1681), ESS (4895/656/997), GEN
(12499/2087/3397), INS (3953/505/843), NOM (9919/
1398/1831)

Number PL (11432/1507/2215), SG (28210/4031/6016)
Gender and Noun Class FEM (4716/556/1035), MASC (6245/890/1294), NEUT

(2600/318/477)
Animacy ANIM (2671/316/447), INAN (2696/407/615)
Tense PRS (2505/397/454), PST (4093/380/535)

urd (Urdu) Number PL (8105/1008/844), SG (58067/7841/8254)
Case ACC (29707/4210/4112), NOM (29217/3853/4264)


