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Abstract

The prevalent use of social media enables
rapid spread of rumors on a massive scale,
which leads to the emerging need of automatic
rumor verification (RV). A number of previ-
ous studies focus on leveraging stance classi-
fication to enhance RV with multi-task learn-
ing (MTL) methods. However, most of these
methods failed to employ pre-trained contex-
tualized embeddings such as BERT, and did
not exploit inter-task dependencies by using
predicted stance labels to improve the RV
task. Therefore, in this paper, to extend BERT
to obtain thread representations, we first pro-
pose a Hierarchical Transformer', which di-
vides each long thread into shorter subthreads,
and employs BERT to separately represent
each subthread, followed by a global Trans-
former layer to encode all the subthreads. We
further propose a Coupled Transformer Mod-
ule to capture the inter-task interactions and
a Post-Level Attention layer to use the pre-
dicted stance labels for RV, respectively. Ex-
periments on two benchmark datasets show the
superiority of our Coupled Hierarchical Trans-
former model over existing MTL approaches.

1 Background

Recent years have witnessed a profound revolu-
tion in social media, as many individuals gradually
turn to different social platforms to share the latest
news and voice personal opinions. Meanwhile, the
flourish of social media also enables rapid dissemi-
nation of unverified information (i.e., rumors) on
a massive scale, which may cause serious harm to
our society (e.g., impacting presidential election
decisions (Allcott and Gentzkow, 2017)). Since
manually checking a sheer quantity of rumors on

'Note that the concept of hierarchy in this paper is different
from that in Yang et al. (2016), as we use hierarchy to refer
to a neural structure that first models the local interactions

among posts within each subthread, followed by modeling the
global interactions among all the posts in the whole thread.

Source Post

Lee Kuan Yew died already. www.pmo.gov.sg/Iky. | Support

R1: Reply Post

He died several days ago. They didn’t announce until now. | Support

R2: Reply Post
Is it true? Lee Kuan Yew Died? Can anyone confirm it? |

R21: Reply Post \L
No, | don’t believe it is true. | Deny
R211: Reply Post \L
| also think so. He was on TV last week. | Deny
Figure 1: An example conversation thread with both
rumor veracity label and stance labels. Each post has a

stance label towards the claim in the source post, and
the source claim was later identified as false rumor.

social media is naturally labor-intensive and time-
consuming, it is crucial to develop an automatic
rumor verification approach to mitigate their harm-
ful effect.

Rumor verification is typically defined as a task
of determining whether the source claim in a con-
versation thread is false rumor, true rumor, or un-
verified rumor (Zubiaga et al., 2018a). In the litera-
ture, much work has been done for rumor verifica-
tion (Liu et al., 2015; Ma et al., 2016; Ruchansky
et al., 2017; Chen et al., 2018; Kochkina and Li-
akata, 2020). Among them, one appealing line of
work focuses on exploiting stance signals to en-
hance rumor verification (Zubiaga et al., 2016),
since it is observed that people’s stances in reply
posts usually provide important clues to rumor veri-
fication (e.g., in Fig. 1, if the source claim is denied
or queried by most replies, it is highly probable
that the source claim contains misinformation and
is false rumor).

This line of work has attracted increasing atten-
tion in recent years. A number of multi-task learn-
ing (MTL) methods have been proposed to jointly
perform stance classification (SC) and rumor veri-
fication (RV) over conversation threads, including
Sequential LSTM-based methods (Li et al., 2019),
Tree LSTM-based methods (Kumar and Carley,
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2019), and Graph Convolutional Network-based
methods (Wei et al., 2019). These MTL approaches
are mainly constructed upon the MTL2 framework
proposed in Kochkina et al. (2018), which aims to
first learn shared representations with shared layers
in the low level, followed by learning task-specific
representations with separate stance-specific layers
and rumor-specific layers in the high level.

Although these MTL approaches have shown the
usefulness of stance signals to rumor verification,
they still suffer from the following shortcomings:
(1) The first obstacle lies in their single-task mod-
els for SC or RV, whose randomly initialized text
encoders such as LSTM tend to overfit existing
small annotated corpora. With the recent trend of
pre-training, many pre-trained text encoders such
as BERT have been shown to overcome the overfit-
ting problem and achieve significant improvements
in many NLP tasks (Devlin et al., 2019). However,
unlike previous sentence-level tasks, our SC and
RV tasks require the language understanding over
conversation threads in social media. Since BERT
is unable to process arbitrarily long sequences due
to its maximum length constraint in the pre-training
stage, it remains an open question how to extend
BERT to our SC and RV tasks. (2) Another im-
portant limitation of previous studies lies in their
multi-task learning framework. First, the MTL2
framework used in existing methods fails to explic-
itly model the inter-task interactions between the
stance-specific and rumor-specific layers. Second,
although it has been observed that people’s stances
in reply posts are crucial to rumor verification, the
stance distributions predicted from stance-specific
layers have not been utilized for rumor veracity
prediction in the MTL2 framework.

To address the above two shortcomings, we ex-
plore the potential of BERT for stance-aware rumor
verification, and propose a new multi-task learn-
ing model based on Transformer (Vaswani et al.,
2017), named Coupled Hierarchical Transformer.
Our main contributions can be summarized as fol-
lows:

e To extend BERT as our single-task model for
SC and RV, we propose a Hierarchical Trans-
former architecture. Specifically, we first flatten
all the posts in a conversation thread into a long
sequence, and then decompose them evenly into
multiple subthreads, each within the length con-
straint of BERT. Next, each subthread is encoded
with BERT to capture the local interactions be-

tween posts within the subthread, and then a
Transformer layer is stacked on top of all the
subthreads to capture the global interactions be-
tween posts in the whole conversation thread.

o To tackle the limitations of the MTL2 frame-
work, we first design a Coupled Transformer
Module to capture the inter-task interactions be-
tween the stance-specific and the rumor-specific
layers. Moreover, to utilize the stance distribu-
tions predicted for each post, we propose to con-
catenate them with its associated post represen-
tations, followed by a post-level attention mech-
anism to automatically learn the importance of
each post for the final rumor verification task.

Evaluations on two benchmark datasets demon-
strate the following: First, compared with existing
single-task models, our Hierarchical Transformer
brings consistent performance gains on Macro-F}
for both SC and RV tasks. Second, our Coupled
Hierarchical Transformer outperforms the state-of-
the-art multi-task learning approach by 9.2% and
6.3% on Macro-F} for the two benchmarks, respec-
tively.

2 Related Work

Stance Classification: Although stance classifica-
tion has been well studied in different contexts such
as online forums (Hasan and Ng, 2013; Lukasik
et al., 2016; Ferreira and Vlachos, 2016; Moham-
mad et al., 2016), a recent trend is to study stance
classification towards rumors in different social
media platforms (Mendoza et al., 2010; Qazvinian
et al., 2011). These studies can be roughly catego-
rized into two groups. One line of work aims to
design different features to capture the sequential
property of conversation threads (Zubiaga et al.,
2016; Aker et al., 2017; Pamungkas et al., 2018;
Zubiaga et al., 2018b; Giasemidis et al., 2018). An-
other line of work attempts to apply recent deep
learning models to automatically capture effective
stance features (Kochkina et al., 2017; Veyseh et al.,
2017). Our work extends the latter line of work by
proposing a hierarchical Transformer based on the
recent pre-trained BERT for this task. Moreover,
we notice that our BERT-based hierarchical Trans-
former is similar to the model proposed in (Pap-
pagari et al., 2019), but we want to point out that
our model design in the input and output layers is
specific to stance classification, which is different
from their work.

Rumor Verification: Due to the negative impact
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of various rumors spreading on social media, ru-
mor verification has attracted increasing attention
in recent years. Existing approaches to single-task
rumor verification generally belong to two groups.
The first line of work focuses on either employ-
ing a myriad of hand-crafted features (Qazvinian
et al., 2011; Yang et al., 2012; Kwon et al., 2013;
Ma et al., 2015) including post contents, user pro-
files, information credibility features (Castillo et al.,
2011), and propagation patterns, or resorting to var-
ious kinds of kernels to model the event propaga-
tion structure (Wu et al., 2015; Ma et al., 2017).
The second line of work applies variants of sev-
eral neural network models to automatically cap-
ture important features among all the propagated
posts (Ma et al., 2016; Ruchansky et al., 2017;
Chen et al., 2018). Different from these studies, the
goal in this paper is to leverage stance classifica-
tion to improve rumor verification with a multi-task
learning architecture.

Stance-Aware Rumor Verification: The recent
advance in rumor verification is to exploit stance
information to enhance rumor verification with dif-
ferent multi-task learning approaches. Specifically,
Ma et al. (2018a) and Kochkina et al. (2018) respec-
tively proposed two multi-task learning architec-
tures to jointly optimize stance classification and
rumor verification based on two different variants
of RNN, i.e., GRU and LSTM. More recently, Ku-
mar and Carley (2019) proposed another multi-task
LSTM model based on tree structures for stance-
aware rumor verification. Our work bears the same
intuition to these previous studies, and aims to ex-
plore the potential of the pre-trained BERT to this
multi-task learning task.

3 Methodology

In this section, we first formulate the task of stance
classification (SC) and rumor verification (RV). We
then describe our single-task model for SC and RV,
followed by introducing our multi-task learning
framework for stance-aware rumor verification.

3.1 Task Formulation

Given a Twitter corpus, let us first use D =
{C1,Cy, ..., Cpp)} to denote a set of conversation
threads in the corpus. Each thread C; is then as-
sumed to consist of a post with the source claim S°
and a sequence of reply posts sorted in chronologi-
cal order, denoted by RY, R?, ..., RN,

For the SC task, given an input thread C;, we

assume that each post (including a source post and
reply posts) in the thread is annotated with a stance
label towards the source claim, namely support,
deny, query, and comment. Formally, let s = (50, st
..., s) denote the sequence of stance labels, and
the goal of SC is to learn a sequence classification
function g: SO, R', ... RN — 0, st ... sV,
For the RV task, we assume that each input
thread C; is associated with a rumor label y;, which
belongs to one of the three classes, namely false ru-
mor, true rumor, and unverified rumor. The goal of
RV is to learn a classification function f: C; — ;.

3.2 Hierarchical Transformer for Stance
Classification and Rumor Verification

In this subsection, we present our proposed Hier-
archical Transformer, which is a single-task learn-
ing framework encompassing the tasks of SC and
RV. Fig. 2 illustrates the overview of our model,
which mainly consists of four modules, including
input thread transformation, local context encoding,
global context encoding, and output layers.
Motivation: Although BERT has been widely
adopted in various NLP tasks (Devlin et al., 2019),
its application to our SC and RV tasks is not triv-
ial. First, most previous studies employed BERT
to obtain token-level representations for sentence
or paragraph understanding, while our SC and RV
tasks primarily require sentence-level representa-
tions for conversation thread understanding. Sec-
ond, due to the maximum length constraint during
the pre-training stage, BERT cannot be directly
applied to encode arbitrarily long sequences, e.g.,
conversation threads in our tasks. Although trun-
cating the input sequences is a feasible solution,
it will inevitably ignore many posts that might be
crucial for rumor verification.

Our main idea to address the limitations above is
to divide the long sequence of a thread into shorter
sequences, each within the length constraint of
BERT, and to use a hierarchical model to capture
the global interactions at the top layer.

Input Thread Transformation: First, to obtain
post-level representations, we insert two special
tokens, i.e., [CLS] and [SEP], to the beginning and
the end of each post, where the [CLS] token is in-
tended to represent the semantic meaning of the
post following it. We then sort the transformed
posts in each thread C; in chronological order, fol-
lowed by flattening them into a long sequence. Sec-
ond, to eliminate the maximum length constraint,
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Rumor Label
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Stance Label
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Figure 2: Our Single-Task Model (Hierarchical Transformer) for Stance Classification and Rumor Verification.

we propose to decompose the flattened sequence
into multiple subthreads, so that each subthread has
the same number of posts, and the sequence length
of each subthread satisfies the length constraint.
Formally, let C; = (S°, RY, ..., R"V) denote the
flattened thread, where S° is the source post, and
RJ refers to the j-th reply post. As shown in the
bottom of Fig. 2, we assume that C; is decomposed
into k subthreads, each subthread consists of n con-
secutive posts, and each post consists of 1m tokens?.
For the j-th post in the thread Cj, let us use P; =
(xéLS, x{, . ’infw xgEP) to denote its input rep-
resentations, where each token x is represented by
summing up its word embeddings, segment embed-
dings and position embeddings. For the [-th sub-
thread in C;, we use By = (P, Py, ..., Py(—1))
to refer to it.
Local Context Encoding (LCE): Next, we em-
ploy the pre-trained BERT to separately process
the k£ subthreads to capture the local interactions
between adjacent posts within each subthread:

h; =BERT(B)), [=1,2,...,k (1)
where h; € R™*¢ is the hidden representation
generated for the [-th subthread.

Global Context Encoding (GCE): To further
capture the global interactions between all the posts
in the whole conversation thread, we propose to
first concatenate the hidden representations of each
subthread: h=h; ® hy & ... ® h;. We then feed
h to a standard Transformer layer as follows:

2Note that for parallel computing, each post is padded or
truncated to have the same number of tokens, i.e., m, and each
subthread is padded to have the same number of posts, i.e., n.

h = LN(h + MH-ATT(h)), )
H = LN(h + FFN(h)), 3)

where MH-ATT and FFN respectively refer to the
multi-head self-attention and the feed forward net-
work (Vaswani et al., 2017), and LN refers to layer
normalization (Ba et al., 2016).

Output Layers: Based on the global hidden rep-
resentation H, we further stack the output layers
to make predictions for SC and RV, respectively.
Specifically, for the SC task, we treat the hidden
state of the j-th [CLS] token as the representation
for the j-th post, followed by adding a softmax
layer to classify its stance towards the source claim:

p(s’ | H, ) = softmax(W, HZ, ¢ + by), €))

where W, € R%** and b, € R* are learnable
parameters. Moreover, for the RV task, we add a
softmax layer over the last hidden state of the first
[CLS] token for rumor veracity prediction:

p(y | Hews) = softmax(W, Hes +b,),  (5)

where W, € R%*3 and b, € R? are weight and
bias parameters.

3.3 Coupled Hierarchical Transformer for
Stance-Aware Rumor Verification

Based on the above single-task model (i.e., Hier-
archical Transformer), we describe our proposed
multi-task learning (MTL) framework for stance-
aware rumor verification in this subsection.

Baseline MTL Framework: To exploit the stance
signals for rumor verification, a widely used MTL
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Figure 3: Baseline Multi-Task Learning Framework (MTL2)
for Stance-Aware Rumor Verification.

framework is the MTL2 model proposed in Kochk-
ina et al. (2018), which assumes that the SC and
RV tasks share the low-level neural layers but the
high-level layers are specific to each task. As il-
lustrated in Fig. 3, to adapt our Hierarchical Trans-
former to this MTL2 framework, we propose to
share the input and LCE modules between SC and
RY, followed by employing separate GCE and out-
put modules for these two tasks, respectively.
Motivation: However, as mentioned before, this
baseline MTL framework has two major limita-
tions. First, it fails to consider the inter-task inter-
action. Since the GCE module in SC is supervised
to capture salient stance-specific features such as
no doubt, agree and fake news, these features can
be leveraged to guide the GCE module in RV to cap-
ture those important rumor-specific features closely
related to stance features. Moreover, since both
stance-specific and rumor-specific features are in-
tuitively crucial to RV, it is necessary to effectively
integrate them. Second, it ignores the sequential
stance labels predicted from the output module in
SC. Actually, the predicted stance distributions for
each post can capture the temporal evolution of
public stances towards the source claim, which
may reflect indicative clues for veracity prediction.
Coupled Transformer Module: To model inter-
task interactions, we devise a Coupled Transformer
Module with two coupled components in Fig. 4: a
stance-specific Transformer and a cross-task Trans-
former.

Concretely, we first employ a standard Trans-
former layer (i.e., Eqn (2) and Eqn (3)) to obtain
stance-specific representations P in the right chan-
nel. Next, to learn the inter-task interactions in the
left channel, we design a multi-head stance-aware
attention mechanism (MH-SATT) by treating P
as queries, and h as keys and values, which es-
sentially leverages stance-specific features in P to
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Figure 4: Our Multi-Task Learning Framework (Coupled Hi-
erarchical Transformer) for Stance-Aware Rumor Verification.

guide our model to pay more attention to stance-
aware rumor-specific features. Specifically, the i-th
head of MH-SATT is defined as follows:

SATT; (P, h) = softmax( m\/%jvkm

where {Wq, Wy, W, } € R¥/#%d gre parameters,
and z is the number of heads.

Moreover, to integrate stance-specific and rumor-
specific features, we propose to add a layer norm
together with a residual connection as follows:

)[Wyh]", (6)

V = LN(P + MH-SATT(P, h)). )

Finally, we add a feed-forward network and a layer
normalization to get the rumor-stance hybrid repre-
sentations V:

V = LN(V 4+ FFN(V)). (8)

Post-Level Attention with Stance Labels: To
address the second limitation, we propose to con-
catenate each post’s stance distribution and its cor-
responding hidden representation, followed by a
post-level attention layer to automatically learn the
importance of each post.

Specifically, as shown in Fig. 4, we first use
Eqn (4) to predict the stance distribution of the j-th
post in the right channel, denoted by p’. We then
treat the hybrid representation of the j-th [CLS]
token (i.e., V]CLS) as the representation of the j-th
post, and concatenate it with p?, followed by feed-
ing them to a post-level attention layer to obtain
the stance label-aware thread representation U:
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Stance Labels

Rumor Veracity Labels

Dataset #Threads  #Tweets  #Support  #Deny  #Query #Comment #True #False #Unverified
SemEval-17 325 5,568 1,004 415 464 3,685 145 74 106
PHEME 2,402 105,354 1,067 638 697

Table 1: Basic statistics of the SemEval-2017 dataset and the PHEME dataset.

u; = v tanh (Wh(VéLs 2] Pj))7 ©)
exp(u;)
= — ) (10)
! Zzl\il exp(ur)
N .
UZZ%’(V%LS@W)' an
j=1

Output Layers: Finally, since V?:Ls and U can
be considered as the token-level thread representa-
tion and the post-level thread representation respec-
tively, we propose to concatenate them to predict
the veracity label of the source claim:

p(y | Vo, U) = softmax (WT (VgLs e U)+ b)7 (12)

where W € R(24+49)%3 and b € R? are weight and
bias terms.

Model Training: To optimize all the parameters
in our Coupled Hierarchical Transformer, we adopt
the alternating optimization strategy to minimize
the following objective function, which is a combi-
nation of the cross-entropy loss of the two tasks:

M
_ 1 0
J = _(M ;logp(yi | Vs, U)
M’

N
ZZlogp(sj | P]C'LS)>7 (13)

k=1j=1

+

1
M/

where M and M’ refer to the number of samples
for the tasks of RV and SC, respectively.

4 Experiments

In this section, we first evaluate our single-task
model on both stance classification (SC) and rumor
verification (RV), followed by evaluating our multi-
task learning model on RV. Finally, we perform
further analysis to provide deeper insights into our
proposed multi-task learning model.

4.1 Experiment Setting

Dataset: To demonstrate the effectiveness of our
proposed approaches, we carry out experiments on
two benchmark datasets, i.e., SemEval-2017 and
PHEME. Table 1 shows the basic statistics of the
two datasets.

Specifically, SemEval-2017 is a widely used
dataset from SemEval-2017 Challenge Task 8,
which contains 325 Twitter conversation threads
discussing rumors (Derczynski et al., 2017). The
dataset has been split into training, development,
and test sets, where the former two sets are related
to eight events and the test set covers two addi-
tional events. Since each thread is annotated with a
rumor veracity label and each post in the thread is
annotated with its stance towards the source claim,
this dataset is used for evaluating both SC and RV
tasks in this work.

PHEME is a well known dataset for RV, which
contains 2402 Twitter conversation threads dis-
cussing nine events. For fair comparison with ex-
isting approaches, we perform cross-validation ex-
periments based on leave-one-event-out settings:
for each fold, all the threads related to one event
are used for testing, and all the threads related to
the other eight events are used for training. Follow-
ing previous studies (Kochkina et al., 2018; Wei
etal., 2019), PHEME is only used for evaluating
the performance of RV.

Since the class distribution of the two datasets
are imbalanced, we employ Macro-F} as the main
evaluation metric and accuracy as the secondary
evaluation metric for both tasks.

Parameter Settings: Our models are based on the
pre-trained uncased BERT},;, model (Devlin et al.,
2019), where the number of BERT layers is 12 and
the number of attention heads is z = 12. Moreover,
for both Hierarchical Transformer and Coupled Hi-
erarchical Transformer, we set the learning rate as
5e-5, and the dropout rate as 0.1. Due to memory
limitation, for each conversation thread, the num-
ber of subthreads is set to k = 6, and the maximum
input length of each subthread is set as 512. For
each subthread, the number of posts is setton =17,
and the number of tokens in each post is fixed to m
= 30. Moreover, the batch size is respectively set as
4 and 2 for Hierarchical Transformer and Coupled
Hierarchical Transformer, respectively. We imple-
ment all the models based on PyTorch with a 24GB
NVIDIA TITAN RTX GPU.
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Single Stance Type Evaluation

Overall Evaluation

Method Support-F1  Deny-F7  Query-Fy  Comment-F} Macro-F  Accuracy
SVM (Pamungkas et al., 2018) 0.410 0.000 0.580 0.880 0.470 0.795
BranchLSTM (Kochkina et al., 2018) 0.403 0.000 0.462 0.873 0.434 0.784
Temporal ATT (Veyseh et al., 2017) - - - - 0.482 0.820
Conversational-GCN (Wei et al., 2019) 0.311 0.194 0.646 0.847 0.499 0.751
Hierarchical Transformer (Ours) 0.421 0.255 0.520 0.841 0.509 0.763
Table 2: Results of stance classification on the SemEval-2017 dataset.
SemEval-2017 Dataset PHEME Dataset
Setting Method Macro-F;  Accuracy Macro-F;  Accuracy
BranchLSTM (Kochkina et al., 2018) 0.491 0.500 0.259 0.314
TD-RvNN (Ma et al., 2018b) 0.509 0.536 0.264 0.341
Single-Task  Hierarchical GCN-RNN (Wei et al., 2019) 0.540 0.536 0.317 0.356
HiTPLAN (Khoo et al., 2020) 0.581 0.571 0.361 0.438
Hierarchical Transformer (Ours) 0.592 0.607 0.372 0.441
BranchLSTM+NileTMRG (Kochkina et al., 2018) 0.539 0.570 0.297 0.360
MTL2 (Veracity+Stance) (Kochkina et al., 2018) 0.558 0.571 0.318 0.357
Multi-Task ~ Hierarchical PSV (Wei et al., 2019) 0.588 0.643 0.333 0.361
MTL2-Hierarchical Transformer (Ours) 0.657 0.643 0.375 0.454
Coupled Hierarchical Transformer (Ours) 0.6807 0.6787 0.3967 0.4667

Table 3: Results of rumor veracity prediction. Single-Task indicates that stance labels are not used during the training stage.
indicates that our Coupled Hieararchical Transformer model is significantly better than the best compared system with p-value <

0.05 based on McNemar’s significance test.

4.2 Main Results
4.2.1 Evaluation on Single-Task Models

In this subsection, we compare our proposed Hi-
erarchical Transformer with existing single-task
models for SC and RV, respectively.

Stance Classification (SC): We first consider the
following competitive approaches that focus on
SC only: (1) SVM is a baseline method that
feeds conversation-based and affective-based fea-
tures to linear SVM (Pamungkas et al., 2018); (2)
BranchLSTM is an LSTM-based architecture de-
signed by Kochkina et al. (2018), which focuses on
modeling the sequential branches in each thread;
(3) Temporal ATT is an attention-based model pro-
posed by Veyseh et al. (2017), which treats each
post’s adjacent posts in a conversation timeline as
its local context, followed by employing attention
mechanism over the local context to learn the im-
portance of each adjacent post; (4) Conversational
GCN is the state-of-the-art approach recently pro-
posed by Wei et al. (2019), which leverages graph
convolutional network to model the relations be-
tween posts in each thread.

We report the SC results in Table 2. First, it is
clear to observe that our Hierarchical Transformer
model performs much better than all the compared
systems on Macro-F;. Second, compared with

previous approaches, our model shows its strong
capability of detecting posts belonging to the sup-
port and deny stances. This is crucial for veracity
prediction, because the support and deny stances
usually provide important clues to identify the true
and false rumors respectively (see Fig. 5). All these
observations demonstrate the general effectiveness
of our Hierarchical Transformer model.

Rumor Verification (RV): We then consider sev-
eral competitive systems that focus on RV only: (1)
RVvNN is a recursive neural network model based on
top-down tree structure, which is proposed by Ma
et al. (2018b); (2) Hierarchical GCN-RNN is a
variant of Conversational GCN for veracity pre-
diction; (3) PLAN is the state-of-the-art approach
recently proposed by Khoo et al. (2020), which
uses a randomly initialized Transformer to encode
each conversation thread.

We report the RV results of compared systems
on SemEval-2017 and PHEME in the top part of
Table 3. First, compared with earlier methods for
RV, we observe that our Hierarchical Transformer
model gains significant improvements, outperform-
ing Hierarchical GCN-RNN by 5.2 and 5.5 abso-
lute percentage points on Macro-F} for the two
datasets, respectively. Second, even compared with
the recent state-of-the-art model PLAN, our model
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Methods (TEM: Transformer) Macro- Fy Accuracy
Hierarchical TFM 0.372 0.441
- Truncating Input & Removing Global TFM 0.354 0.409
Coupled Hierarchical TFM 0.396 0.466
- Removing Post-Level Attention 0.385 0.430
- Replacing Cross-Task TEM with TFM 0.390 0.456

Table 4: Ablation study on the PHEME dataset.

can still bring moderate performance gains on the
two datasets. Since PLAN is based on randomly
initialized Transformer whereas our model is based
on pre-trained Transformer (i.e., BERT), this shows
the usefulness of employing pre-trained models for
RV, which agrees with our first motivation.

4.2.2 Evaluation on Multi-Task Models

In this subsection, we evaluate the effectiveness
of our Coupled Hierarchical Transformer model,
and consider several multi-task learning frame-
works for stance-aware rumor verification: (1)
BranchLSTM+NileTMRG is a pipeline approach,
which first trains a BranchLSTM model for SC, fol-
lowed by a SVM classifier for RV (Kochkina et al.,
2018); (2) MTL?2 is the MTL framework proposed
in (Kochkina et al., 2018), which shares a single
LSTM channel but uses two separate output lay-
ers for SC and RV, respectively; (3) Hierarchical
PSV is a hierarchical model proposed by (Wei et al.,
2019), which first learns content and stance features
via Conversational-GCN, followed by exploiting
temporal evolution for RV via Stance-Aware RNN;
(4) MTL2-Hierarchical Transformer is our adapted
MTL2 model which is introduced in Section 3.3.

In the bottom part of Table 3, we can first find
that all the multi-task learning models achieve bet-
ter performance than their corresponding single-
task baselines across the two datasets, which ver-
ifies the usefulness of stance signals for RV. Sec-
ond, among all the multi-task learning approaches,
it is clear to observe that our Coupled Hierarchi-
cal Transformer model consistently achieves the
best results on both SemEval-2017 and PHEME,
which outperforms the second best method by 2.3
and 2.1 absolute percentage points on Macro- F for
the two datasets, respectively. These observations
show the superiority of our proposed model over
previous multi-task learning methods for stance-
aware rumor verification.

4.3 Ablation Study

To examine the impact of each key component in
our single-task and multi-task approaches, we fur-

SemEval-2017 PHEME (Prince Toronto event as the test set)
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Figure 5: Correlation between predicted stance classes (y-
axis) and predicted rumor labels (x-axis) from our Coupled
Hierarchical Transformer on test sets of our two datasets.

ther perform ablation study in this subsection.

As shown in Table 4, for our proposed Hierarchi-
cal Transformer, we can see that if we directly ap-
ply BERT to our RV task (i.e., truncating the input
thread and removing the global Transformer layer),
the performance will drop significantly. This is
in line with our first motivation, and also demon-
strates the effectiveness of our proposed model.

Moreover, for our multi-task learning framework
(i.e., Coupled Hierarchical Transformer), the post-
level attention layer shows its indispensable role
because of the significant performance drop after re-
moval. Meanwhile, replacing our cross-task Trans-
former with the standard Transformer will lead to
moderate performance drop in both datasets, which
also suggests its importance to our full model.

4.4 Correlation Between Predicted Stance
Labels and Veracity Labels

To better understand the usefulness of stance sig-
nals to veracity prediction in our Coupled Hierar-
chical Transformer, we first analyze the correlation
between predicted stance classes and predicted ve-
racity labels on our two datasets. Since the com-
ment stance is not crucial for rumor verification, we
focus on the other three stance classes, i.e., deny,
query, and support.

As shown in Fig. 5, we can clearly see that true

rumor is more closely associated with the support
stance, whereas false rumor is generally dominated
by the other two stances deny and query. This
suggests that our multi-task learning model has
implicitly learnt that the stance signal can provide
important clues to rumor verification.
Case Study: To provide deeper insights into our
Coupled Hierarchical Transformer, we carefully
choose one representative sample from our test
set, and show the stance and veracity prediction
results as well as the attention weights of each post
learnt in the post-level attention layer. Due to space
limitation, we only show five posts with the top-5
attention weights in the thread.
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Predicted Veracity Label: False Rumor
Source Post Predicted

Stance

Post-Level
ion Weight

0.004

These are not timid colours; soldiers back guarding tomb of

unknown soldier after today's shooting #standforcanada Support

Reply Post
{ @user1@user2 apparently a hoax. best to take tweet
down.

‘ Deny 0.625

Reply Post
@user3 not a hoax. This is before the shooting | Support 0.001

Reply Post

@user1@user4 | don't believe there are soldiers
guarding this area right now. 2/2 Deny

Reply Post l/

—| @user5@user1 who wants to have a "go"??? |

0.368

Figure 6: Stance classes and rumor labels predicted by Cou-
pled Hierarchical Transformer on a test sample in PHEME
dataset.

In Fig. 6, we can see that although the source
claim is supported by some replies, our model
learns to pay much higher attention weights to the
two posts with deny stance while primarily ignor-
ing the other posts, which may help our model
correctly predict its veracity label as false rumor.

5 Conclusion

In this paper, we first examined the limitations of
existing approaches to stance classification (SC)
and rumor verification (RV). To tackle these limi-
tations, we first proposed a single-task model (i.e.,
Hierarchical Transformer) for SC and RV, followed
by designing a multi-task learning framework with
a Coupled Transformer module to capture inter-
task interactions and a Post-Level Attention Layer
to use stance distributions for the RV task. Experi-
ments on two benchmarks show the effectiveness
of our single-task and multi-task learning methods.
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