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Abstract

Customer support agents play a crucial role
as an interface between an organization and
its end-users. We propose CAIRAA: Conver-
sational Approach to Information Retrieval
for Agent Assistance, to reduce the cognitive
workload of support agents who engage with
users through conversation systems. CAIRAA
monitors an evolving conversation and recom-
mends both responses and URLs of documents
the agent can use in replies to their client. We
combine traditional information retrieval (IR)
approaches with more recent Deep Learning
(DL) models to ensure high accuracy and ef-
ficient run-time performance in the deployed
system. Here, we describe the CAIRAA sys-
tem and demonstrate its effectiveness in a pilot
study via a short video1.

1 Introduction

Customer care conversation systems have been
used in a variety of domains, including technical
support, reservation systems, and banking appli-
cations (Acomb et al., 2007). The majority of
such systems provide a dashboard to customer sup-
port agents, so that they can interact with multi-
ple end-users in parallel. The support agents use
such dashboards to perform diverse tasks to address
user requests, such as question-answering, conver-
sational search, document passage extraction and
transactions. When identifying the responses to
user queries, the support agents either, (1) rely on
their own domain knowledge and articulate such
knowledge to be sent to the users or, (2) manually
extract the keywords from the conversation and use
search functions provided in their dashboards to
identify the relevant knowledge contained in docu-
ments, and send URLs for these documents. The

∗ Work done when author was at IBM Research
1https://youtu.be/EeqMLLBWhxQ

Dialogue

A: Hello. Thank you for contacting
Help@IBM. How may I help you?

U: Hi yes. I cannot connect to ibm connections cloud
in ios

U: yesterday my phone asked for the pw out of the blue
and I clicked cancel bec on the road and now I have
no connection to server

A: No worries. First you will need to cre-
ate a 16 digit password for for ibm connec-
tions cloud https://w3.ibm.com/help/#/
article/ios_create_16char_pass then
you will need to open on the iphone settings-
accounts and passwords-ibm connections cloud click
on your email address and in the password field enter
this 16 digit password.

U: I have that pw. Can I use my old one or better to
create a new one?

A: Please always try the existing
password first. If it doesn’t
work, then create a new password.

U: Worked. ;) Thanks

Table 1: Sample dialog from Help@IBM where Agent
(A) utterance includes a URL to the User (U) query.

continuous process of identifying knowledge and
responding becomes an immense cognitive work-
load for the customer support agents.

Although automated conversation systems have
improved immensely in the last decade with ad-
vances in natural language processing, machine
learning and dialog management (Wen et al. (2016);
Li et al. (2016); Li et al. (2017)), these systems still
fail to satisfy the sophisticated customer’s needs in
real-life scenarios. This leads to frustration (Weisz
et al., 2019) and less engagement (Vtyurina et al.,
2017). Therefore, having an empathetic human
agent in-the-loop supported by efficient and ac-
curate content retrieval, allows better coverage of
customer needs and reduces customer frustration.

With CAIRAA, we propose and showcase a sys-
tem that provides real-time assistance to the sup-
port agents and alleviates their cognitive workload.
Our system provides two forms of real-time rec-

https://youtu.be/EeqMLLBWhxQ
https://w3.ibm.com/help/#/article/ios_create_16char_pass
https://w3.ibm.com/help/#/article/ios_create_16char_pass
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Figure 1: CAIRAA System Architecture: (a) Agent Dashboard - a web application (b) Orchestrator APIs -
server side communications, controls data and process flow (c) Document Recommendation Engine - retrieves and
recommends documents relevant to conversational context (d) Response Recommendation Engine - recommends
agent responses based on conversational context (f) Storage - retains document content, conversation and system
logs, agents feedback and activity (g) Training infrastructure - a dedicated cluster for deep learning models training
(In development)

ommendations to the support agents: (1) URLs of
the documents that contain information to resolve
user issues, and (2) natural language responses that
the agent can use to respond to their customer’s
queries. The operation of CAIRAA is illustrated
in Table 1 with a sample conversation between a
user and a support agent. In the example, the ut-
terances made by the support agents are prefixed
by A and the utterances made by the user are pre-
fixed by U. The natural language utterances that
CAIRAA predicted for the support agent are shown
in different font (monospace) while the URLs of
the related documents predicted by CAIRAA are
shown in blue. In the following sections we de-
scribe the different components of our system and
their implementation details.

2 System
The architecture of CAIRAA is illustrated in Figure
1. It consists of an Agent-dashboard that is used by
customer-support agents to interact with customers
(users). The agent is assisted by recommendations
from two engines - Document Recommendation
Engine and the Response Recommendation Engine.
As their names suggest, these engines provide real-
time recommendations for documents that could
be relevant during the chat, as well as, responses
to the agent. Figure 1 also depicts components for
data storage as well as model training.

2.1 Web Content Extraction

Given a collection of human-to-human conversa-
tion logs, we extract the mentions of URLs (doc-
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uments) from these conversations. We use Sele-
nium2 to render static as well as dynamic web-
content. With our primary focus on text content,
additional cleaning processes that filters selected
HTML content (e.g., menus, search bars, side bars,
headers and footers) and only preserves text con-
tent, along with embedded procedural and multi-
media content references is implemented. The pro-
cessed content is exported in two formats. a) mark-
down and b) formatted text.

2.2 Document Recommendation Engine

Given a set of conversational logs along with
documents mentioned in those conversations, we
train the Document Recommendation Engine us-
ing a pipeline consisting of an information-retrieval
model followed by a deep-learning model to recom-
mend URLs relevant to an evolving conversation.
This Document Recommendation Engine is trained
with the objective of predicting the most relevant
web content for the conversation at hand. Once
trained, this is provided as a real-time service to
the agent dashboard to recommend the appropriate
URLs to support agents while they converse.

2.2.1 Information Retrieval model
The Information Retrieval (IR) model is imple-
mented using an Apache Lucene index, employed
with English language analyzer and default BM25
similarity. Documents in the index are represented
using two fields, (1) web page content, (2) docu-
ment’s representation augmented with the text of
all historic conversations that link to it.

For a given (dialog) query d, matching docu-
ments are retrieved using four different ranking
steps, which are combined using a cascade ap-
proach (Wang et al., 2011). Following (Van Gysel
et al., 2016), we obtain an initial pool of candi-
date documents using a lexical query aggregation
approach. To this end, each utterance ti ∈ d is
represented as a separate weighted query-clause,
having its weight assigned relatively to its sequence
position in the dialog (Van Gysel et al., 2016). Var-
ious sub-queries are then combined using a sin-
gle disjunctive query. The second ranker evalu-
ates each document y obtained by the first ranker
against an expanded query (applying relevance
model (Lavrenko and Croft, 2001)). The third
ranker applies a manifold-ranking approach (Xu
et al., 2011), aiming to score content-similar doc-

2http://www.seleniumhq.org

uments (measured by Bhattacharyya language-
model based similarity) with similar scores.

The last ranker in the cascade treats the dia-
log query d as a verbose query and applies the
Fixed-Point (FP) method (Paik and Oard, 2014) for
weighting its words. Yet, compared to “traditional”
verbose queries, dialogs are further segmented into
distinct utterances. Using this approach, we imple-
ment an utterance-biased extension for enhanced
word-weighting. To this end, we first score the
various utterances based on the initial FP weights
of words they contain and their relative position.
We then propagate utterance scores back to their
associated words.

2.2.2 Deep Learning Model
We use the Enhanced Sequential Inference Model
(ESIM) proposed by Chen et al. (2017) with the
same goal as the IR model but it uses dense vec-
tors to represent conversation-contexts and doc-
uments. The objective is to predict the relevant
URL given the dialog history (context). The
multi-turn dialog history is concatenated together
to form the context of length m, represented as
C = (c1, c2, ..., ci, ..., cm), where ci is the ith
word in context. Given a web page content U
as U = (r1, r2, ..., rj , ..., rn), where rj is the jth
word in web page content, the web page is selected
using the conditional probability P (y = 1|C,U),
which shows the confidence of selecting the web
page U given context C.

We observe that the IR model is much faster than
the neural ESIM model, but the ESIM model pro-
vides improved performance in comparison. We
combine the ESIM model with the IR model us-
ing a re-ranking of latter’s candidate pool, which
provides a combination of both ranker models. For
example, the IR model returns the top-k relevant
web pages (k = 20) and then the ESIM model
is used to re-rank them and show a subset to the
agent based on their confidence scores. We refer to
this two-stage pipeline as a hybrid approach, which
combines the best of both worlds and deliver near
real-time experience with better performance.

2.2.3 Rating and Confidence Estimation
In addition to providing a ranked list of webpages,
the Document Recommendation Engine provides
a rating and confidence estimate for each recom-
mended web content, allowing to better guide the
agent to the best solutions. The rating and confi-
dence per each single recommended content URL
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is estimated using a novel query performance pre-
diction (QPP) model (Roitman et al., 2019), trained
over a multitude of features obtained from the con-
versation context and recommended content analy-
sis.

Besides, at every step of the conversation, a cru-
cial decision that the Document Recommendation
Engine has to make is to decide whether or not
to present the recommendations to the agent. In
case of a low confidence, the human agent may ask
for further clarifications from the end-user. Such
a decision is taken by training another confidence
estimation model that considers the confidence of
each individual recommended URL. Here, the sys-
tem further exploits the interaction between the rec-
ommendations made by the IR and ESIM models,
with the observation that higher agreement (mea-
sured by ranking-similarity) usually translates to
higher overall confidence (Roitman and Kurland,
2019). We assessed the quality of our confidence
estimation model by measuring its accuracy and
log-loss per each task. For a single recommended
URL, the model is trained to classify it as relevant
or not. For a top-k recommended URLs list, the
model is trained to determine whether it contains
at least one relevant URL.

2.3 Response Recommendation Engine

As mentioned above, an agent is also shown recom-
mended responses based on how other agents have
responded to similar conversation contexts in the
pasts. Thus, given the current dialog input context
C = (c1, c2, ..ci..cm), CAIRAA generates recom-
mendations using a combination of generative as
well as retrieval based methods.

2.3.1 Multi-task training
We use a hierarchical encoder (Serban et al., 2016)
to encode conversation contexts. Specifically, the
encoder first encodes each conversation turn and
generates turn-level representations for the dialog.
A secondary encoder then generates the overall con-
text representation using the turn-level encodings.

We utilize this context encoding to generate re-
sponse recommendations in three ways: (1) Using
a vanilla decoder (Serban et al., 2016) (2) Using a
decoder that additionally validates whether a sub-
sequence at each time-step is likely to be relevant.
(3) Using the encoded representations in a Siamese
dual-encoder (Lowe et al., 2017) that also encodes
the responses.
Vanilla Decoder: The decoder is initialized using

the context encoding. The decoder generates the
response autoregressively, that is, the token at each
time-step is generated conditioned on the previous
tokens of the response. The decoder is trained to
minimize the log-perplexity of each word in the
gold response.
Decoder with sub-sequence validation: When
trained on actual conversation logs, vanilla de-
coders often resort to generic responses or re-
sponses that are irrelevant to the context. Hence, to
enforce relevance, we enhance the decoder with a
classifier for each time-step of decoding. At each
time-step, the classifier predicts the relevance of the
response so-far for the given conversational con-
text. The classifier is trained to predict a relevance
of 1 for a prefix of the gold response and 0 for a
prefix of any other randomly sampled response at
each time-step of decoding. Simultaneously, the
decoder is also trained to minimize the word loss,
that is, log-perplexity of each word in the gold re-
sponse. For any response r, the relevance loss can
be written as follows:

lossr(r) = −
T∑
t=1

log p(yt|w1, . . . , wt) , (1)

where yt = 1 for the gold response and 0 for the
randomly sampled response.

During inference, the token at each time-step
is generated so as to maximize the sum of log-
probability of the token and the log-relevance of
the resultant partial response.
Siamese Dual-Encoder: Finally, the context en-
coding is also fed to a Siamese network. To train
the Siamese network, we randomly sample k − 1
negative responses for each conversation context.
The negative responses as well as the gold response
are fed to a recurrent encoder (bidirectional LSTM)
to generate the corresponding response embed-
dings. The context embedding as well as the corre-
sponding response embeddings are fed to a 1-in-k
classifier, where the k labels correspond to the k
responses. The classifier is trained to predict the
class-label that corresponds to the gold response.
If the gold response r has label `, the Siamese loss
can be computed as follows:

losss(r) = − log p(`|r1, . . . , rk) . (2)

Multi-task training Objective: The final loss is
the sum of the loss for each of the above models.
The model is trained until the loss on an indepen-
dent validation set stops decreasing.
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Figure 2: CAIRAA In Action; (A & B) Document and Response recommendations panel respectively; (C) Top
Recommendation; (D) Confidence score of the recommendation and a button to copy URLs/responses into agent’s
chat with the end-user; (E) Agent’s response; (F) Full-text search bar for agents to perform manual search.

2.3.2 Retrieval-based model

In order to build a retrieval based model, we encode
the dialog contexts using the pre-trained Univer-
sal Sentence Encoder (USE) (Cer et al., 2018) as
well as the context encoder trained using multi-task
objective discussed above. For each encoder, we
create an annoy index3 which stores the context
embeddings and the corresponding responses from
the training data.

In order to return a response recommendation, a
given dialog context is encoded either using USE
or the context encoder. We fetch the responses of
the k-nearest neighbours in the annoy index.

2.3.3 Scoring the responses

Before the retrieved and generated responses are
presented to the user, they are scored from 0 to 1.
We use a voting-based scoring mechanism, where
each response votes for all the other responses (gen-
erated as well as retrieved). To achieve this, we en-
code each response using the pre-trained USE. The
score of a response is the mean of the inner-product
between the corresponding embedding and all the
other response embeddings. Since USE embed-
dings are normalized, these inner products range
between 0 and 1. Finally, the responses are sorted
based on their scores and presented to the user.

3https://github.com/spotify/annoy

3 Deployment Details

Once the recommendation engines are trained,
CAIRAA is tasked with the live operation of the
agent dashboard. CAIRAA adopts optimized user
interface design to deliver precise information with
minimal agent interactions. Prioritizing scalabil-
ity, each operational component is intentionally
designed to be modular and stateless.

3.1 Agent Dashboard

The Agent dashboard (Figure 2) is an interactive
web application that is integrated with customer
support applications (e.g., LivePerson). Imple-
mented using Javascript/ HTML5, it comprises of
a chat interceptor; document and response recom-
mendations panels; a full-text search; and a feed-
back facility runnable in an ES6 compliant browser.
Chat interceptor monitors customer support appli-
cations (e.g., LivePerson) for conversation updates.
Both document and response recommendations
panels in their minimalist design limits informa-
tion overload, where the former shows the title and
a short description of the web content and the latter
displays the recommended utterance. The agent
interactivity with recommendations is limited to
copy, view and reject. A full-text search allows the
expert agents to perform simple keyword searches
based on their domain knowledge.

While we have automated the agent assistance
for recommending documents and responses, we
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have retained the support agent in the loop to pro-
vide final edits and control over what is presented to
the end-user. This allows a support agent to adjust
the tone of responses, and to include documents
outside recommended ones in their responses. Our
framework captures these responses and their em-
bedded recommendations for future retraining /
retesting so that the system can self learn and auto-
matically adjust to support agent activities.

4 Conclusion and Future Work

By providing real-time assistance to agents to sup-
port their clients, we leverage the speed and accu-
racy of automated recommendation engines while
retaining the agents’ expertise. Learning from con-
versation logs, CAIRAA promotes more uniform
support by keeping all agents aware of the latest in-
formation to address current end-user needs. Com-
bining traditional information retrieval approaches
with modern deep learning models ensures high
accuracy and efficient run-time performance in our
deployed system.
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