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Abstract

The recent paradigm shift to contextual word
embeddings has seen tremendous success
across a wide range of down-stream tasks.
However, little is known on how the emergent
relation of context and semantics manifests
geometrically. We investigate polysemous
words as one particularly prominent instance
of semantic organization. Our rigorous
quantitative analysis of linear separability and
cluster organization in embedding vectors
produced by BERT shows that semantics
do not surface as isolated clusters but form
seamless structures, tightly coupled with
sentiment and syntax.

1 Introduction

Word embeddings have not only proven to be excel-
lent representations in standalone tasks (Mikolov
et al., 2013; Pennington et al., 2014; Wang et al.,
2019) but have revolutionized the way modern NLP
architectures are built (Collobert et al., 2011), and
by now encode text input for virtually every task
available. Recently, this approach has been paired
with the transformer architecture (Vaswani et al.,
2017) and a selection of pre-training tasks to boot-
strap more powerful contextual word embeddings
such as the ones produced by BERT (Devlin et al.,
2018). s
The paradigm of encoding a word in its context has
elevated the embedding methodology once more
and from several perspectives. First, performance
improvements on down-stream tasks are extraor-
dinary across a wide range of tasks (Ethayarajh,
2019; Devlin et al., 2018; Wang et al., 2018). Sec-
ond, the embedding space now must incorporate a
vastly larger number of vectors, and its organiza-
tion becomes an interesting research question on
its own, especially given the largely unattributed
performance gains.

In this work, we investigate the important concept
of polysemy as one prominent example of semantic
sub-space organization. Given that a word such
as ‘bank‘ can have several meanings, how are the
corresponding vectors arranged in a contextual
embedding space?
We investigate the organization of polysemous
words in BERT embeddings through the concepts
of separability and clusterability using the Word-
Net annotations in SemCor (Miller et al., 1990).
Our particular focus is a rigorous quantitative
rather than purely qualitative analysis.

2 Related Work

Work connecting polysemy and word vector rep-
resentations is often limited to static word em-
beddings where context has to be re-introduced
through graph-based approaches (Remus and Bie-
mann, 2018), auxiliary corpora (Pelevina et al.,
2016), or even image data (Bruni et al., 2013).
Usually, word sense disambiguation (WSD) per-
formance is then chosen as a proxy to semantic
disambiguation (Pilehvar and Camacho-Collados,
2019), yet no insights into the organization of the
vector space are obtained. In a similar spirit, Kage-
back and Salomonsson (2016) add context through
a recurrent encoder, yet do not analyze the geome-
try of these encodings.
In the meantime, the WSD task has been tackled
successfully with BERT embeddings and Wiede-
mann et al. (2019) show that even a non-parametric
approach suffices, which confirms that BERT must
arrange word vectors according to semantic proper-
ties and suggests that no additional semantic pre-
training is necessary (Levine et al., 2019).

When BERT embeddings of a polysemous word
are analyzed, the findings are often summarized as
a Silhouette score (Rousseeuw, 1987) or custom
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variance measures (Ethayarajh, 2019). While this
allows to compare the average displacement due to
semantic change across words, it does not give us a
good sense of the overall structure of word vectors.
In addition, the embedding space produced by
BERT has been analyzed in terms of syntactic fea-
tures, such as parse-trees (Coenen et al., 2019;
Jawahar et al., 2019), part-of-speech, verbs and
arguments (Shi et al., 2019; Ribeiro et al., 2019).

It is clear that BERT distinguishes polysemous
words at least locally by nearest neighbors
(Schmidt and Hofmann, 2020). However, the ex-
tent to which clusters are formed and how they are
connected has only been addressed qualitatively
(Coenen et al., 2019; Jawahar et al., 2019; Wiede-
mann et al., 2019), and no agreed-upon answer
has emerged. This can be partly attributed to their
qualitative methodology.

3 Method

How can we verify a hypothesis about the orga-
nization of polysemous words without manually
inspecting the geometry for each word? Given
a set of sentences with annotated polysemy, two
strategies emerge: First, we can inspect the embed-
ding space through the lens of a classifier with a
clearly defined hypothesis set and take its accuracy
as a signifier for the corresponding organization.
Second, we can use an unsupervised approach to
detect sub-space organization and compare its re-
sult to the WordNet labels using an appropriate
similarity metric. We will proceed by analyzing
both questions.
In our experiments, we consider the output of the
last layer of BERT as the contextual word embed-
dings since this layer is most commonly used for

downstream tasks, as depicted in Figure 1. To work
with a discrete formalization of semantics, we use
the WordNet 3.0 annotations in the SemCor 3.0
sentence dataset (Miller et al., 1990). This allows
us to retrieve embeddings that are annotated with a
ground-truth semantic class label. SemCor is one
of the largest sense-annotated corpora with 37, 176
sentences, enabling us to quantify semantics and
sample labelled word embeddings.

3.1 Linear Separability

Before turning to the clustering task, we investigate
to what degree semantic classes can be separated
by a hyperplane in embedding space, resulting in
semantic regions as depicted in Figure 2. To this
end, we train a simple linear classifier on top of the
BERT embeddings (without fine-tuning) to predict
the semantic class and report accuracy. Crucially,
we down-project the 768-dimensional vectors us-
ing PCA ensuring that separability is not merely a
consequence of high dimensionality. In the high-
dimensional setting, this allows to assess to what
extent semantic regions do form.

3.2 Clusterability

Once the presence of semantic regions has been
concluded, we want to investigate the extent to
which clusters form and how they are connected.
For this, we train clustering models to understand
the modality of the data, and to what extent clusters
are in isolation from each other.

Because we are interested in practical gains, we
refrain from using purely theoretical tools and clus-
terability scores (Ackerman and Ben-David, 2009;
Mccarthy et al., 2016). In contrast, we use inter-
pretable clustering models (Frey and Dueck, 2007;
Ester et al., 1996; Campello et al., 2013; Comani-

Figure 1: PCA (left) and UMAP (right) visualizations for contextual word embeddings sampled for the word run.
Red points denote nouns, blue points denote verbs
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Figure 2: Datapoints generated by sampling from a nor-
mal distribution. (left) includes class information de-
noted by the green, blue and red colors, forming seman-
tic regions. This data is linearly separable, as there is
always a hyperplane separating any two classes. (right)
The class label information is not available. It is un-
clear how a clustering would look like.

ciu and Meer, 2002) that can detect the number of
clusters in the data, as well as an adapted version of
the Chinese Whispers algorithm (Biemann, 2006)
that accounts for the hubness property

1 amongst
embedding vectors outputted by BERT. The Chi-
nese Whispers algorithm relies on a graph produced
by the word embeddings and identifies clusters by
passing messages between the nodes of the graph.
From the sampled word embeddings we create the
graph adjacency matrix M by calculating the pair-
wise cosine similarity between embeddings, and
similar to Ribeiro et al. (2019), prune any edges
which correspond to a cosine similarity lower than
wcutoff = µ(M) + c�(M) where c is a hyperpa-
rameter, and µ and � are the mean and standard
deviation of all cosine similarities recorded in M .
Hubs are defined as the top n embedding vectors
with highest cumulative cosine similarities.
The development and test sets consist of n

2 words
respectively, including their set of sampled embed-
ding vectors.

To score the overlap between a predicted clustering
and the underlying ground-truth labels, we use the
Adjusted Random Index (ARI) (Rand, 1971; Hu-
bert and Arabie, 1985), which returns a similarity
measure where a value of 1 implies an identical
clustering up to a permutation and a value of 0
implies random predictions. Please note that this
also introduces a small penalty when more clusters
are introduced than actually present in the dataset
according to the cluster-class-labels. However, pre-

1
hubs are embeddings close to a majority of other embed-

ding vectors, degrading performance (Conneau et al., 2017)

venting this is not in the scope of this work, and as
such we do not further investigate this.

If no clustering is found, one can say with high con-
fidence that the semantic regions are not occurring
in different modes, and rather transition seamlessly
into one another. This allows for an assessment
in high dimensional space to what extent semantic
regions are obvious, apparent by distinct modes.
The motivation behind both experiments is visually
depicted in Figure 2.

4 Experiments

We proceed with a discussion of the experimental
results.

4.1 Bias in SemCor

First we aim to develop an understanding of bias
in SemCor, as any bias in the data will propagate
on to further observations. We conduct a simple
experiment where we analyse the distribution of
occurrences of semantic class ids.

Figure 3: A cumulative plot over all words with Word-
Net senses within SemCor 3.0 and their respective fre-
quencies. The SemCor data is biased. Words with a
low WordNet sense index, i.e. close to 0, occur more
often than words with a high WordNet sense index, i.e.
above 5. There would be no bias if the two distributions
would overlap. The skew could be a natural effect of
how words with lower WordNet indices are assigned to
more frequently used words.

Figure 3 depicts that the SemCor corpus is biased
towards semantic classes which have a lower Word-
Net class ID. This could be due to the nature of
WordNet, likely assigning low id indices to fre-
quently used words. This requires us to oversample
underrepresented classes for select experiments.
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4.2 Linear Separability

We now turn our attention to what extent closed
semantic regions exist in the embedding space. For
a fixed word w that frequently occurs in SemCor,
we sample up to n = 500 embedding vectors, ap-
ply 5-fold cross-validation, and oversample any
imbalanced-class datasamples. The input is nor-
malized, and we apply dimensionality reduction
using PCA to k components, ensuring that each of
the semantic classes contains at least 20 samples
in the dataset. We use the SemCor semantic class
labels as the response variables for the classifica-
tion task. We only include semantic classes for
the given word, leaving us with few class-labels.
Results are shown in Table 1.

k % variance accuracy (mean / std)

10 0.30 0.74 / 0.05
20 0.44 0.80 / 0.04
30 0.54 0.82 / 0.03
50 0.70 0.87 / 0.04
75 0.79 0.83 / 0.04

100 0.85 0.89 / 0.03

Table 1: Average mean and standard deviation of the ac-
curacy of a linear classifier trained on the 2 most com-
mon semantic classes for the words was, one, is. The
choice of words is limited to the datasize of SemCor to
allow for a significant size of datasamples.

Accuracy rates of over 75% are achieved with
k = 20. The % variance refers to the explainable
variance when the largest k eigenvalues are kept,
as calculated by

Pk
i �i where �i is the ith largest

eigenvalue, hinting to how much information ac-
cording to the largest k principal components are
kept. Similar results are achieved for 2-class and
multi-class classification tasks with other words
(see Appendix A.2). We conclude that the indi-
vidual semantic classes are – to a reasonable ex-
tent – linearly separable. As such, contextual word
embeddings are not randomly distributed over the
embedding space, and closed semantic regions do
form.

4.3 Polysemy vs. Variance

Before we analyze the structure of individual se-
mantic classes, we want to understand how poly-
semy relates to the mean standard deviation of all
contextual word embeddings X sampled for the
word w. This helps us to understand how we need
to adapt different clustering models.

Figure 4: For each word w, we sample up to n = 500
contextual word embeddings X . We calculate the mean
standard-deviation across embedding-dimensions asPn

i

Pd
j xi

j where xj
i 2 Rd is the jth dimension of

the ith sampled embedding vector for word w. Word-
Net is used to retrieve the number of semantic classes
of w, denoting the amount of polysemy of word w.

Figure 4 shows that polysemous words have high
variance, an idea initially put forth by Miller and
Charles (1991). As such, vectors of polysemous
words seem to be distributed at least as dispersed
around the space as non-polysemous words do.
Notice that the converse is not true, as there are
non-polysemous words that have high variance.
Amongst others, these could include stopwords
as hinted by Ethayarajh (2019).

4.4 Clusterability

We now want to understand to what extent dis-
tinct semantic clusters exist. For a set of words
w1, . . . , wn, we sample up to n = 500 em-
bedding vectors per word from SemCor and the
news.2007.corpus 2 and apply dimensional-
ity reduction using PCA to k dimensions. Due
to the limited size of SemCor, we set the words
in the development set to was, thought, made,
only, central, pizza and the set of words in
the test set to run, round, down, bank, key,
arms. We include both polysemous words, as well
as words which have a single recorded WordNet
meaning, such that our experiments do not over-
fit to polysemous words. With default-package
hyperparameters, all clustering algorithms would
indicate that no distinct clustering could be found,

2http://www.statmt.org/wmt14/
training-monolingual-news-crawl/

http://www.statmt.org/wmt14/training-monolingual-news-crawl/
http://www.statmt.org/wmt14/training-monolingual-news-crawl/
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i.e. the sampled word embeddings would form
a continuous density. Because we want to see to
what extent BERT conforms to commonly accepted
linguistic senses as given by WordNet, we apply
the NetworkX Chinese Whispers implementation
(Hagberg et al., 2006) on the resulting graph. Hy-
perparameters and their respective bounds for all
clustering models are listed in Appendix A.1. We
include the [SEP] tag at the end of the sentence, as
this increases performance on all clustering meth-
ods. The ARI is exclusively calculated on samples
for which we have the ground-truth cluster label
and stems from the mean of multiple such word
clusterings. We notice that choosing suitable hyper-
parameters is non-trivial and thus apply automated
model- and hyperparameter selection, making use
of random search (Bergstra and Bengio, 2012) and
bayesian optimization (Wang et al., 2013) 3.

Clustering Model ARI Score

Affinity Propagation 0.316
Modified Chinese Whispers 0.457

DBScan 0.170
HDBScan 0.298
MeanShift 0.251

Table 2: The maximum ARI scores achieved during
hyperparameter optimization on different models for
k = 20 and n = 1000.

The models used and their maximal performance
after 300 trials of hyperparameters search are
recorded in Table 2. Our modified Chinese Whis-
pers algorithm is the best-performing clustering
model. However, with an ARI score of 0.457, this
method is not able to perfectly distinguish between
multiple WordNet semantic classes 4. To under-
stand why this is the case, we proceed with a qual-
itative evaluation of some resulting clusters. One
such clustering is depicted in Table 3, presenting
four partitions for arms 5. We achieve similar such
results for 9 other words but focus on one exam-
ple for conciseness. Notice that the clusters differ
not only in semantics but also in other linguistic
phenomena, most notably sentiment.

Given the quantitative and qualitative evaluation,
we conclude that one cannot generalize that a clear

3We use the implementation by https://github.
com/facebook/Ax

4An ARI score of at least 0.7 is desirable to conclude a
significant overlap between two clusters

5See Table 8 for a complete example clustering

Partition Representative Sample

1 Ms. Gotbaum tried to slide her handcuffed
arms from her back to her front . . .

2 She swooped him up into her arms

and kissed him madly . . .

3 . . . and shuttle robotic arms of a
solar array and truss . . .

4 The classic years of the arms race,
the 1950s and ’60s before . . .

Table 3: Representative samples for the clusters
found by the best performing clustering model for the
word arms. Partitions 1-3 consider a person’s arms,
whereas partition 4 considers arms as a synonym to
weaponry. Partitions 1, 2 and 3 strongly contrast in
sentiment (scared, loving, and confident respectively).

distinction between semantic concepts in contex-
tual word embeddings produced by BERT exists.
One of numerous counterexamples is underlined
in the left visualization of Figure 1. Certain com-
binations of semantics, syntax, and sentiment are
more frequent than others (Hagoort, 2003; May
et al., 2019), likely affecting the subspace structure
and sometimes resulting in clusters that are dis-
tinct due to their simultaneous difference in both
semantic and syntactic features (see Appendix A.3).
However, this work also poses the question to what
extent rule-based and handcrafted notions of se-
mantics, such as the ones given by WordNet, are
appropriate, opening the question to what extent
BERT actually encodes a more flexible notion of
semantics that is not rooted in hard distinctions be-
tween senses. We leave analysis in this direction to
future work.

5 Conclusion

In this paper, we investigated how contextual word
embeddings produced by BERT capture semantic
concepts with a strong focus on polysemy. Our
findings show that BERT creates closed semantic
regions that are not clearly distinguishable from
each other, seamlessly transitioning from one into
another. We have shown that subspace organization
is not purely determined by semantics. Instead, it
is also intertwined with concepts such as syntax
and sentiment. Finally, the repeated limitations
of hard distinctions between senses as given via
WordNet also open up the question to what extent
BERT adds a more flexible notion of semantics,
compared to the hard-coded examples formed by

https://github.com/facebook/Ax
https://github.com/facebook/Ax
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linguists. A better understanding of these relations
will be key to developing more interpretable and
expressive word embeddings, as well as linguistic
knowledge representations.
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