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Abstract

Sequence labeling systems should perform re-
liably not only under ideal conditions but also
with corrupted inputs—as these systems often
process user-generated text or follow an error-
prone upstream component. To this end, we
formulate the noisy sequence labeling prob-
lem, where the input may undergo an unknown
noising process and propose two Noise-Aware
Training (NAT) objectives that improve robust-
ness of sequence labeling performed on per-
turbed input: Our data augmentation method
trains a neural model using a mixture of clean
and noisy samples, whereas our stability train-
ing algorithm encourages the model to create
a noise-invariant latent representation. We em-
ploy a vanilla noise model at training time.
For evaluation, we use both the original data
and its variants perturbed with real OCR er-
rors and misspellings. Extensive experiments
on English and German named entity recog-
nition benchmarks confirmed that NAT con-
sistently improved robustness of popular se-
quence labeling models, preserving accuracy
on the original input. We make our code and
data publicly available for the research com-
munity.

1 Introduction

Sequence labeling systems are generally trained
on clean text, although in real-world scenarios,
they often follow an error-prone upstream com-
ponent, such as Optical Character Recognition
(OCR; Neudecker, 2016) or Automatic Speech
Recognition (ASR; Parada et al., 2011). Sequence
labeling is also often performed on user-generated
text, which may contain spelling mistakes or ty-
pos (Derczynski et al., 2013). Errors introduced
in an upstream task are propagated downstream,
diminishing the performance of the end-to-end sys-
tem (Alex and Burns, 2014). While humans can
easily cope with typos, misspellings, and the com-
plete omission of letters when reading (Rawlinson,

reference text: Singapore sees prestige in hosting WTO .
ground-truth labels: S-LOC O O O O S-ORG O
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Figure 1: An example of a labeling error on a slightly
perturbed sentence. Our noise-aware methods correctly
predicted the location (LOC) label for the first word, as
opposed to the standard approach, which misclassified
it as an organization (ORG). We complement the ex-
ample with a high-level idea of our noise-aware train-
ing, where the original sentence and its noisy variant
are passed together through the system. The final loss
is computed based on both sets of features, which im-
proves robustness to the input perturbations.

2007), most Natural Language Processing (NLP)
systems fail when processing corrupted or noisy
text (Belinkov and Bisk, 2018). Although this prob-
lem is not new to NLP, only a few works addressed
it explicitly (Piktus et al., 2019; Karpukhin et al.,
2019). Other methods must rely on the noise that
occurs naturally in the training data.

In this work, we are concerned with the perfor-
mance difference of sequence labeling performed
on clean and noisy input. Is it possible to narrow
the gap between these two domains and design an
approach that is transferable to different noise dis-
tributions at test time? Inspired by recent research
in computer vision (Zheng et al., 2016), Neural
Machine Translation (NMT; Cheng et al., 2018),
and ASR (Sperber et al., 2017), we propose two
Noise-Aware Training (NAT) objectives that im-
prove the accuracy of sequence labeling performed
on noisy input without reducing efficiency on the
original data. Figure 1 illustrates the problem and
our approach.

Our contributions are as follows:
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• We formulate a noisy sequence labeling prob-
lem, where the input undergoes an unknown
noising process (§2.2), and we introduce a
model to estimate the real error distribution
(§3.1). Moreover, we simulate real noisy input
with a novel noise induction procedure (§3.2).

• We propose a data augmentation algorithm
(§3.3) that directly induces noise in the input
data to perform training of the neural model
using a mixture of noisy and clean samples.

• We implement a stability training method
(Zheng et al., 2016), adapted to the sequence
labeling scenario, which explicitly addresses
the noisy input data problem by encouraging
the model to produce a noise-invariant latent
representation (§3.4).

• We evaluate our methods on real OCR errors
and misspellings against state-of-the-art base-
line models (Peters et al., 2018; Akbik et al.,
2018; Devlin et al., 2019) and demonstrate the
effectiveness of our approach (§4).

• To support future research in this area and to
make our experiments reproducible, we make
our code and data publicly available1.

2 Problem Definition

2.1 Neural Sequence Labeling

Figure 2 presents a typical architecture for the neu-
ral sequence labeling problem. We will refer to the
sequence labeling system as F (x; θ), abbreviated
as F (x)2, where x= (x1, . . . , xN ) is a tokenized
input sentence of length N , and θ represents all
learnable parameters of the system. F (x) takes
x as input and outputs the probability distribution
over the class labels y(x) as well as the final se-
quence of labels ŷ= (ŷ1, . . . , ŷN ).

Either a softmax model (Chiu and Nichols, 2016)
or a Conditional Random Field (CRF; Lample et al.,
2016) can be used to model the output distribution
over the class labels y(x) from the logits l(x), i.e.,
non-normalized predictions, and to output the fi-
nal sequence of labels ŷ. As a labeled entity can
span several consecutive tokens within a sentence,

1NAT repository on GitHub: https://github.com/
mnamysl/nat-acl2020

2We drop the θ parameter for brevity in the remaining of
the paper. Nonetheless, we still assume that all components of
F (x; θ) and all expressions derived from it also depend on θ.

special tagging schemes are often employed for de-
coding, e.g., BIOES, where the Beginning, Inside,
Outside, End-of-entity and Single-tag-entity sub-
tags are also distinguished (Ratinov and Roth,
2009). This method introduces strong dependen-
cies between subsequent labels, which are modeled
explicitly by a CRF (Lafferty et al., 2001) that pro-
duces the most likely sequence of labels.
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Figure 2: Neural sequence labeling architecture. In the
standard scenario (§2.1), the original sentence x is fed
as input to the sequence labeling system F (x). Token
embeddings e(x) are retrieved from the corresponding
look-up table and fed to the sequence labeling model
f(x), which outputs latent feature vectors h(x). The
latent vectors are then projected to the class logits l(x),
which are used as input to the decoding model (softmax
or CRF) that outputs the distribution over the class la-
bels y(x) and the final sequence of labels ŷ. In a real-
world scenario (§2.2), the input sentence undergoes an
unknown noising process Γ, and the perturbed sentence
x̃ is fed to F (x).

2.2 Noisy Neural Sequence Labeling

Similar to human readers, sequence labeling should
perform reliably both in ideal and sub-optimal
conditions. Unfortunately, this is rarely the case.
User-generated text is a rich source of informal lan-
guage containing misspellings, typos, or scrambled
words (Derczynski et al., 2013). Noise can also be
introduced in an upstream task, like OCR (Alex and
Burns, 2014) or ASR (Chen et al., 2017), causing
the errors to be propagated downstream.

https://github.com/mnamysl/nat-acl2020
https://github.com/mnamysl/nat-acl2020
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To include the noise present on the source side
of F (x), we can modify its definition accordingly
(Figure 2). Let us assume that the input sentence x
is additionally subjected to some unknown noising
process Γ =P (x̃i |xi), where xi is the original i-th
token, and x̃i is its distorted equivalent. Let V be
the vocabulary of tokens and Ṽ be a set of all finite
character sequences over an alphabet Σ. Γ is known
as the noisy channel matrix (Brill and Moore, 2000)
and can be constructed by estimating the probabil-
ity P (x̃i |xi) of each distorted token x̃i given the
intended token xi for every xi ∈ V and x̃i ∈ Ṽ .

2.3 Named Entity Recognition
We study the effectiveness of state-of-the-art
Named Entity Recognition (NER) systems in han-
dling imperfect input data. NER can be considered
as a special case of the sequence labeling prob-
lem, where the goal is to locate all named entity
mentions in unstructured text and to classify them
into pre-defined categories, e.g., person names, or-
ganizations, and locations (Tjong Kim Sang and
De Meulder, 2003). NER systems are often trained
on the clean text. Consequently, they exhibit de-
graded performance in real-world scenarios where
the transcriptions are produced by the previous up-
stream component, such as OCR or ASR (§2.2),
which results in a detrimental mismatch between
the training and the test conditions. Our goal is
to improve the robustness of sequence labeling
performed on data from noisy sources, without de-
teriorating performance on the original data. We
assume that the source sequence of tokens x may
contain errors. However, the noising process is
generally label-preserving, i.e., the level of noise is
not significant enough to affect the corresponding
labels3. It follows that the noisy token x̃i inher-
its the ground-truth label yi from the underlying
original token xi.

3 Noise-Aware Training

3.1 Noise Model
To model the noise, we use the character-level noisy
channel matrix Γ, which we will refer to as the
character confusion matrix (§2.2).

Natural noise We can estimate the natural error
distribution by calculating the alignments between
the pairs (x̃, x) ∈ P of noisy and clean sentences

3Moreover, a human reader should be able to infer the
correct label yi from the token x̃i and its context. We assume
that this corresponds to a character error rate of ≤ 20%.

using the Levenshtein distance metric (Levenshtein,
1966), where P is a corpus of paired noisy and
manually corrected sentences (§2.2). The allowed
edit operations include insertions, deletions, and
substitutions of characters. We can model inser-
tions and deletions by introducing an additional
symbol ε into the character confusion matrix. The
probability of insertion and deletion can then be
formulated as Pins(c|ε) and Pdel(ε|c), where c is
a character to be inserted or deleted, respectively.

Synthetic noise P is usually laborious to obtain.
Moreover, the exact modeling of noise might be
impractical, and it is often difficult to accurately
estimate the exact noise distribution to be encoun-
tered at test time. Such distributions may depend
on, e.g., the OCR engine used to digitize the doc-
uments. Therefore, we keep the estimated natural
error distribution for evaluation and use a simplified
synthetic error model for training. We assume that
all types of edit operations are equally likely:∑
c̃∈Σ\{ε}

Pins(c̃|ε) = Pdel(ε|c) =
∑

c̃∈Σ\{c, ε}

Psubst(c̃|c),

where c and c̃ are the original and the perturbed
characters, respectively. Moreover, Pins and Psubst

are uniform over the set of allowed insertion and
substitution candidates, respectively. We use the
hyper-parameter η to control the amount of noise
to be induced with this method4.

3.2 Noise Induction
Ideally, we would use the noisy sentences annotated
with named entity labels for training our sequence
labeling models. Unfortunately, such data is scarce.
On the other hand, labeled clean text corpora are
widely available (Tjong Kim Sang and De Meulder,
2003; Benikova et al., 2014). Hence, we propose to
use the standard NER corpora and to induce noise
into the input tokens during training synthetically.

In contrast to the image domain, which is con-
tinuous, the text domain is discrete, and we cannot
directly apply continuous perturbations for written
language. Although some works applied distor-
tions at the level of embeddings (Miyato et al.,
2017; Yasunaga et al., 2018; Bekoulis et al., 2018),
we do not have a good intuition how it changes
the meaning of the underlying textual input. In-
stead, we apply our noise induction procedure to
generate distorted copies of the input. For every

4We describe the details of our vanilla error model along
with the examples of confusion matrices in the appendix.
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input sentence x, we independently perturb each
token xi = (c1, . . . , cK), where K is the length of
xi, with the following procedure (Figure 3):

(1) We insert the ε symbol before the first and
after every character of xi to get an extended
token x′i = (ε, c1, ε, . . . , ε, cK , ε).

(2) For every character c′k of x′i, we sample the
replacement character c̃′k from the correspond-
ing probability distribution P (c̃′k |c′k), which
can be obtained by taking a row of the char-
acter confusion matrix that corresponds to c′k.
As a result, we get a noisy version of the ex-
tended input token x̃′i.

(3) We remove all ε symbols from x̃′i and col-
lapse the remaining characters to obtain
a noisy token x̃i.

t oken��
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Figure 3: Illustration of our noise induction procedure.
Three examples correspond to insertion, deletion, and
substitution errors. xi, x′i, x̃

′
i, and x̃i are the origi-

nal, extended, extended noisy, and noisy tokens, respec-
tively.

3.3 Data Augmentation Method
We can improve robustness to noise at test time by
introducing various forms of artificial noise during
training. We distinct regularization methods like
dropout (Srivastava et al., 2014) and task-specific
data augmentation that transforms the data to re-
semble noisy input. The latter technique was suc-
cessfully applied in other domains, including com-
puter vision (Krizhevsky et al., 2012) and speech
recognition (Sperber et al., 2017).

During training, we artificially induce noise into
the original sentences using the algorithm described
in §3.2 and train our models using a mixture of
clean and noisy sentences. Let L0(x, y; θ) be the
standard training objective for the sequence label-
ing problem, where x is the input sentence, y is the
corresponding ground-truth sequence of labels, and
θ represents the parameters of F (x). We define our
composite loss function as follows:

Laugm(x, x̃, y; θ) =L0(x, y; θ) + αL0(x̃, y; θ),

where x̃ is the perturbed sentence, and α is a weight
of the noisy loss component. Laugm is a weighted
sum of standard losses calculated using clean and
noisy sentences. Intuitively, the model that would
optimize Laugm should be more robust to imperfect
input data, retaining the ability to perform well
on clean input. Figure 4a presents a schematic
visualization of our data augmentation approach.

3.4 Stability Training Method

Zheng et al. (2016) pointed out the output instability
issues of deep neural networks. They proposed a
training method to stabilize deep networks against
small input perturbations and applied it to the tasks
of near-duplicate image detection, similar-image
ranking, and image classification. Inspired by their
idea, we adapt the stability training method to the
natural language scenario.

Our goal is to stabilize the outputs y(x) of a
sequence labeling system against small input per-
turbations, which can be thought of as flattening
y(x) in a close neighborhood of any input sentence
x. When a perturbed copy x̃ is close to x, then y(x̃)
should also be close to y(x). Given the standard
training objective L0(x, y; θ), the original input
sentence x, its perturbed copy x̃ and the sequence
of ground-truth labels y, we can define the stability
training objective Lstabil as follows:

Lstabil(x, x̃, y; θ) =L0(x, y; θ) + αLsim(x, x̃; θ),

Lsim(x, x̃; θ) =D
(
y(x), y(x̃)

)
,

where Lsim encourages the similarity of the model
outputs for both x and x̃,D is a task-specific feature
distance measure, and α balances the strength of
the similarity objective. Let R(x) and Q(x̃) be
the discrete probability distributions obtained by
calculating the softmax function over the logits l(x)
for x and x̃, respectively:

R(x) =P (y |x) = softmax
(
l(x)

)
,

Q(x̃) =P (y |x̃) = softmax
(
l(x̃)

)
.

We model D as Kullback–Leibler divergence
(DKL), which measures the correspondence be-
tween the likelihood of the original and the per-
turbed input:

Lsim(x, x̃; θ) =
∑

i
DKL

(
R(xi)‖Q(x̃i)

)
,

DKL

(
R(x)‖Q(x̃)

)
=
∑

j
P (yj |x) log

P (yj |x)

P (yj |x̃)
,
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(a) Data augmentation training objective Laugm.
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(b) Stability training objective Lstabil.

Figure 4: Schema of our auxiliary training objectives.
x, x̃ are the original and the perturbed inputs, respec-
tively, that are fed to the sequence labeling system
F (x). Γ represents a noising process. y(x) and y(x̃)
are the output distributions over the entity classes for x
and x̃, respectively. L0 is the standard training objec-
tive. Laugm combines L0 computed on both outputs
from F (x). Lstabil fuses L0 calculated on the original
input with the similarity objective Lsim.

where i, j are the token, and the class label indices,
respectively. Figure 4b summarizes the main idea
of our stability training method.

A critical difference between the data augmen-
tation and the stability training method is that the
latter does not use noisy samples for the original
task, but only for the stability objective5. Further-
more, both methods need perturbed copies of the
input samples, which results in longer training time
but could be ameliorated by fine-tuning the existing
model for a few epochs6.

4 Evaluation

4.1 Experiment Setup
Model architecture We used a BiLSTM-CRF ar-
chitecture (Huang et al., 2015) with a single Bidirec-
tional Long-Short Term Memory (BiLSTM) layer
and 256 hidden units in both directions for f(x) in
all experiments. We considered four different text
representations e(x), which were used to achieve
state-of-the-art results on the studied data set and
should also be able to handle misspelled text and
out-of-vocabulary (OOV) tokens:

• FLAIR (Akbik et al., 2018) learns a Bidi-
5Both objectives could be combined and used together.

However, our goal is to study their impact on robustness
separately, and we leave further exploration to future work.

6We did not explore this setting in this paper, leaving such
optimization to future work.

rectional Language Model (BiLM) using
an LSTM network to represent any se-
quence of characters. We used settings rec-
ommended by the authors and combined
FLAIR with GloVe (Pennington et al., 2014;
FLAIR + GloVe) for English and Wikipedia
FastText embeddings (Bojanowski et al.,
2017; FLAIR + Wiki) for German.

• BERT (Devlin et al., 2019) employs a Trans-
former encoder to learn a BiLM from large un-
labeled text corpora and sub-word units to rep-
resent textual tokens. We use the BERTBASE
model in our experiments.

• ELMo (Peters et al., 2018) utilizes a linear
combination of hidden state vectors derived
from a BiLSTM word language model trained
on a large text corpus.

• Glove/Wiki + Char is a combination of pre-
trained word embeddings (GloVe for English
and Wikipedia FastText for German) and ran-
domly initialized character embeddings (Lam-
ple et al., 2016).

Training We trained the sequence labeling model
f(x) and the final CRF decoding layer on top of the
pre-trained embedding vectors e(x), which were
fixed during training, except for the character em-
beddings (Figure 2). We used a mixture of the
original data and its perturbed copies generated
from the synthetic noise distribution (§3.1) with
our noise induction procedure (§3.2). We kept most
of the hyper-parameters consistent with Akbik et al.
(2018)7. We trained our models for at most 100
epochs and used early stopping based on the devel-
opment set performance, measured as an average
F1 score of clean and noisy samples. Furthermore,
we used the development sets of each benchmark
data set for validation only and not for training.

Performance measures We measured the entity-
level micro average F1 score on the test set to com-
pare the results of different models. We evaluated
on both the original and the perturbed data using
various natural error distributions. We induced
OCR errors based on the character confusion ma-
trix Γ (§3.2) that was gathered on a large docu-
ment corpus (Namysl and Konya, 2019) using the
Tesseract OCR engine (Smith, 2007). Moreover,
we employed two sets of misspellings released by

7We list the detailed hyper-parameters in the appendix.
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Belinkov and Bisk (2018) and Piktus et al. (2019).
Following the authors, we replaced every original
token with the corresponding misspelled variant,
sampling uniformly among available replacement
candidates. We present the estimated error rates
of text that is produced with these noise induction
procedures in Table 5 in the appendix. As the eval-
uation with noisy data leads to some variance in
the final scores, we repeated all experiments five
times and reported mean and standard deviation.

Implementation We implemented our models
using the FLAIR framework (Akbik et al., 2019)8.
We extended their sequence labeling model by in-
tegrating our auxiliary training objectives (§3.3,
§3.4). Nonetheless, our approach is universal and
can be implemented in any other sequence labeling
framework.

4.2 Sequence Labeling on Noisy Data

To validate our approach, we trained the base-
line models with and without our auxiliary loss
objectives (§3.3, §3.4)9. We used the CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003) and
the GermEval 2014 (Benikova et al., 2014) data
sets in this setup10. The baselines utilized GloVe
vectors coupled with FLAIR and character embed-
dings (FLAIR + GloVe, GloVe + Char), BERT, and
ELMo embeddings for English. For German, we
employed Wikipedia FastText vectors paired with
FLAIR and character embeddings (FLAIR + Wiki,
Wiki + Char)11. We used a label-preserving training
setup (α= 1.0, ηtrain = 10%).

Table 1 presents the results of this experiment12.
We found that our auxiliary training objectives
boosted accuracy on noisy input data for all base-
line models and both languages. At the same time,
they preserved accuracy for the original input. The
data augmentation objective seemed to perform
slightly better than the stability objective. However,
the chosen hyper-parameter values were rather ar-

8We used FLAIR v0.4.2.
9We experimented with a pre-processing step that used a

spell checking module, but it did not provide any benefits and
even decreased accuracy on the original data. Therefore we
did not consider it a viable solution for this problem.

10We present data set statistics and sample outputs from our
system in the appendix.

11This choice was motivated by the availability of pre-
trained embedding models in the FLAIR framework.

12We did not replicate the exact results from the original
papers because we did not use development sets for training,
and our approach is feature-based, as we did not fine-tune
embeddings on the target task.

bitrary, as our goal was to prove the utility and the
flexibility of both objectives.

4.3 Sensitivity Analysis
We evaluated the impact of our hyper-parameters
on the sequence labeling accuracy using the En-
glish CoNLL 2003 data set. We trained multi-
ple models with different amounts of noise ηtrain
and different weighting factors α. We chose the
FLAIR + GloVe model as our baseline because it
achieved the best results in the preliminary anal-
ysis (§4.2) and showed good performance, which
enabled us to perform extensive experiments.

Figure 5 summarizes the results of the sensi-
tivity experiment. The models trained with our
auxiliary objectives mostly preserved or even im-
proved accuracy on the original data compared
to the baseline model (α= 0). Moreover, they
significantly outperformed the baseline on data
perturbed with natural noise. The best accuracy
was achieved for ηtrain from 10 to 30%, which
roughly corresponds to the label-preserving noise
range. Similar to Heigold et al. (2018) and Cheng
et al. (2019), we conclude that a non-zero noise
level induced during training (ηtrain > 0) always
yields improvements on noisy input data when
compared with the models trained exclusively on
clean data. The best choice of α was in the range
from 0.5 to 2.0. α = 5.0 exhibited lower perfor-
mance on the original data. Moreover, the mod-
els trained on the real error distribution demon-
strated at most slightly better performance, which
indicates that the exact noise distribution does not
necessarily have to be known at training time13.

4.4 Error Analysis
To quantify improvements provided by our ap-
proach, we measured sequence labeling accuracy
on the subsets of data with different levels of per-
turbation, i.e., we divided input tokens based on
edit distance to their clean counterparts. Moreover,
we partitioned the data by named entity class to
assess the impact of noise on recognition of differ-
ent entity types. For this experiment, we used both
the test and the development parts of the English
CoNLL 2003 data set and induced OCR errors with
our noising procedure.

Figure 6 presents the results for the baseline and
the proposed methods. It can be seen that our ap-

13Nevertheless, the aspect of mimicking an empirical noise
distribution requires more thoughtful analysis, and therefore
we leave to future work.
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Data set Model Train loss Original data OCR errors Misspellings† Misspellings‡

English
CoNLL

2003

FLAIR +
GloVe

L0 92.05 76.44±0.45 75.09±0.48 87.57±0.10
Laugm 92.56 (+0.51) 84.79±0.23 (+8.35) 83.57±0.43 (+8.48) 90.50±0.08 (+2.93)
Lstabil 91.99 (-0.06) 84.39±0.37 (+7.95) 82.43±0.23 (+7.34) 90.19±0.14 (+2.62)

BERT
L0 90.91 68.23±0.39 65.65±0.31 85.07±0.15
Laugm 90.84 (-0.07) 79.34±0.32 (+11.11) 75.44±0.28 (+9.79) 86.21±0.24 (+1.14)
Lstabil 90.95 (+0.04) 78.22±0.17 (+9.99) 73.46±0.34 (+7.81) 86.52±0.12 (+1.45)

ELMo
L0 92.16 72.90±0.50 70.99±0.17 88.59±0.19
Laugm 91.85 (-0.31) 84.09±0.18 (+11.19) 82.33±0.40 (+11.34) 89.50±0.16 (+0.91)
Lstabil 91.78 (-0.38) 83.86±0.11 (+10.96) 81.47±0.29 (+10.48) 89.49±0.15 (+0.90)

GloVe +
Char

L0 90.26 71.15±0.51 70.91±0.39 87.14±0.07
Laugm 90.83 (+0.57) 81.09±0.47 (+9.94) 79.47±0.24 (+8.56) 88.82±0.06 (+1.68)
Lstabil 90.21 (-0.05) 80.33±0.29 (+9.18) 78.07±0.23 (+7.16) 88.47±0.13 (+1.33)

German
CoNLL

2003

FLAIR +
Wiki

L0 86.13 66.93±0.49 78.06±0.13 80.72±0.23
Laugm 86.46 (+0.33) 75.90±0.63 (+8.97) 83.23±0.14 (+5.17) 84.01±0.27 (+3.29)
Lstabil 86.33 (+0.20) 75.08±0.29 (+8.15) 82.60±0.21 (+4.54) 84.12±0.26 (+3.40)

Wiki +
Char

L0 82.20 59.15±0.76 75.27±0.31 71.45±0.15
Laugm 82.62 (+0.42) 67.67±0.75 (+8.52) 78.48±0.24 (+3.21) 79.14±0.31 (+7.69)
Lstabil 82.18 (-0.02) 67.72±0.63 (+8.57) 77.59±0.12 (+2.32) 79.33±0.39 (+7.88)

Germ-
Eval
2014

FLAIR +
Wiki

L0 85.05 58.64±0.51 67.96±0.23 68.64±0.28
Laugm 84.84 (-0.21) 72.02±0.24 (+13.38) 78.59±0.11 (+10.63) 81.55±0.12 (+12.91)
Lstabil 84.43 (-0.62) 70.15±0.27 (+11.51) 75.67±0.16 (+7.71) 79.31±0.32 (+10.67)

Wiki +
Char

L0 80.32 52.48±0.31 61.99±0.35 54.86±0.15
Laugm 80.68 (+0.36) 63.74±0.31 (+11.26) 70.83±0.09 (+8.84) 75.66±0.11 (+20.80)
Lstabil 80.00 (-0.32) 62.29±0.35 (+9.81) 68.23±0.23 (+6.24) 72.40±0.29 (+17.54)

Table 1: Evaluation results on the CoNLL 2003 and the GermEval 2014 test sets. We report results on the original
data, as well as on its noisy copies with OCR errors and two types of misspellings released by Belinkov and
Bisk (2018)† and Piktus et al. (2019)‡. L0 is the standard training objective. Laugm and Lstabil are the data
augmentation and the stability objectives, respectively. We report mean F1 scores with standard deviations from
five experiments and mean differences against the standard objective (in parentheses).
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(b) Stability training objective (original test data).
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(d) Stability training objective (tested on OCR errors)

Figure 5: Sensitivity analysis performed on the English CoNLL 2003 test set (§4.3). Each figure presents the results
of models trained using one of our auxiliary training objectives on either original data or its variant perturbed with
OCR errors. The bar marked as ”OCR” represents a model trained using the OCR noise distribution. Other bars
correspond to models trained using synthetic noise distribution and different hyper-parameters (α, ηtrain).
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proach achieved significant error reduction across
all perturbation levels and all entity types. More-
over, by narrowing down the analysis to perturbed
tokens, we discovered that the baseline model was
particularly sensitive to noisy tokens from the LOC
and the MISC categories. Our approach consider-
ably reduced this negative effect. Furthermore, as
the stability training worked slightly better on the
LOC class and the data augmentation was more
accurate on the ORG type, we argue that both meth-
ods could be combined to enhance overall sequence
labeling accuracy further. Note that even if the par-
ticular token was not perturbed, its context could
be noisy, which would explain the fact that our
approach provided improvements even for tokens
without perturbations.

5 Related Work

Improving robustness has been receiving increasing
attention in the NLP community. The most relevant
research was conducted in the NMT domain.

Noise-additive data augmentation A natural
strategy to improve robustness to noise is to aug-
ment the training data with samples perturbed using
a similar noise model. Heigold et al. (2018) demon-
strated that the noisy input substantially degrades
the accuracy of models trained on clean data. They
used word scrambling, as well as character flips
and swaps as their noise model, and achieved the
best results under matched training and test noise
conditions. Belinkov and Bisk (2018) reported sig-
nificant degradation in the performance of NMT
systems on noisy input. They built a look-up table
of possible lexical replacements from Wikipedia
edit histories and used it as a natural source of
the noise. Robustness to noise was only achieved
by training with the same distribution—at the ex-
pense of performance degradation on other types
of noise. In contrast, our method performed well
on natural noise at test time by using a simplified
synthetic noise model during training. Karpukhin
et al. (2019) pointed out that existing NMT ap-
proaches are very sensitive to spelling mistakes and
proposed to augment training samples with random
character deletions, insertions, substitutions, and
swaps. They showed improved robustness to nat-
ural noise, represented by frequent corrections in
Wikipedia edit logs, without diminishing perfor-
mance on the original data. However, not every
word in the vocabulary has a corresponding mis-
spelling. Therefore, even when noise is applied
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Figure 6: Error analysis results on the English CoNLL
2003 data set with OCR noise. We presented the results
of the FLAIR + GloVe model trained with the standard
and the proposed objectives. The data was divided into
the subsets based on the edit distance of a token to its
original counterpart and its named entity class. The
latter group was further partitioned into the clean and
the perturbed tokens. The error rate is the percentage
of tokens with misrecognized entity class labels.

at the maximum rate, only a subset of tokens is
perturbed (20-50%, depending on the language).
In contrast, we used a confusion matrix, which is
better suited to model statistical error distribution
and can be applied to all tokens, not only those
present in the corresponding look-up tables.

Robust representations Another method to im-
prove robustness is to design a representation that
is less sensitive to noisy input. Zheng et al. (2016)
presented a general method to stabilize model pre-
dictions against small input distortions. Cheng et al.
(2018) continued their work and developed the
adversarial stability training method for NMT by
adding a discriminator term to the objective func-
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tion. They combined data augmentation and sta-
bility objectives, while we evaluated both methods
separately and provided evaluation results on natu-
ral noise distribution. Piktus et al. (2019) learned
representation that embeds misspelled words close
to their correct variants. Their Misspelling Oblivi-
ous Embeddings (MOE) model jointly optimizes
two loss functions, each of which iterates over a
separate data set (a corpus of text and a set of mis-
spelling/correction pairs) during training. In con-
trast, our method does not depend on any additional
resources and uses a simplified error distribution
during training.

Adversarial learning Adversarial attacks seek
to mislead the neural models by feeding them with
adversarial examples (Szegedy et al., 2014). In a
white-box attack scenario (Goodfellow et al., 2015;
Ebrahimi et al., 2018) we assume that the attacker
has access to the model parameters, in contrast to
the black-box scenario (Alzantot et al., 2018; Gao
et al., 2018), where the attacker can only sample
model predictions on given examples. Adversarial
training (Miyato et al., 2017; Yasunaga et al., 2018),
on the other hand, aims to improve the robustness of
the neural models by utilizing adversarial examples
during training.

The impact of noisy input data In the context
of ASR, Parada et al. (2011) observed that named
entities are often OOV tokens, and therefore they
cause more recognition errors. In the document
processing field, Alex and Burns (2014) studied
NER performed on several digitized historical text
collections and showed that OCR errors have a
significant impact on the accuracy of the down-
stream task. Namysl and Konya (2019) examined
the efficiency of modern OCR engines and showed
that although the OCR technology was more ad-
vanced than several years ago when many historical
archives were digitized (Kim and Cassidy, 2015;
Neudecker, 2016), the most widely used engines
still had difficulties with non-standard or lower
quality input.

Spelling- and post-OCR correction. A natural
method of handling erroneous text is to correct it
before feeding it to the downstream task. Most pop-
ular post-correction techniques include correction
candidates ranking (Fivez et al., 2017; Flor et al.,
2019), noisy channel modeling (Brill and Moore,
2000; Duan and Hsu, 2011), voting (Wemhoener
et al., 2013), sequence to sequence models (Afli

et al., 2016; Schmaltz et al., 2017) and hybrid sys-
tems (Schulz and Kuhn, 2017).

In this paper, we have taken a different approach
and attempted to make our models robust without
relying on prior error correction, which, in case of
OCR errors, is still far from being solved (Chiron
et al., 2017; Rigaud et al., 2019).

6 Conclusions

In this paper, we investigated the difference in ac-
curacy between sequence labeling performed on
clean and noisy text (§2.3). We formulated the
noisy sequence labeling problem (§2.2) and intro-
duced a model that can be used to estimate the
real noise distribution (§3.1). We developed the
noise induction procedure that simulates the real
noisy input (§3.2). We proposed two noise-aware
training methods that boost sequence labeling ac-
curacy on the perturbed text: (i) Our data augmen-
tation approach uses a mixture of clean and noisy
examples during training to make the model resis-
tant to erroneous input (§3.3). (ii) Our stability
training algorithm encourages output similarity for
the original and the perturbed input, which helps
the model to build a noise invariant latent repre-
sentation (§3.4). Our experiments confirmed that
NAT consistently improved efficiency of popular
sequence labeling models on data perturbed with
different error distributions, preserving accuracy
on the original input (§4). Moreover, we avoided
expensive re-training of embeddings on noisy data
sources by employing existing text representations.
We conclude that NAT makes existing models ap-
plicable beyond the idealized scenarios. It may
support an automatic correction method that uses
recognized entity types to narrow the list of feasible
correction candidates. Another application is data
anonymization (Mamede et al., 2016).

Future work will involve improvements in the
proposed noise model to study the importance of
fidelity to real-world error patterns. Moreover, we
plan to evaluate NAT on other real noise distribu-
tions (e.g., from ASR) and other sequence labeling
tasks to support our claims further.
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A Noise Model - Supplementary
Materials

In this section, we present the extended description
of our vanilla noise model introduced in §3.1. Let
Pedit = η/3 be the probability of performing a sin-
gle character edit operation (insertion, deletion, or
substitution) that replaces the source character c
with a noisy character c̃, where c̃ 6= c. Equation (1)
defines the vanilla error distribution, which we use
at training time:

P (c̃|c) =



Pedit

|Σ\{ε}|
, if c= ε and c̃ 6= ε.

1− Pedit, if c= ε and c̃= ε.

Pedit

|Σ\{c, ε}|
, if c 6= ε and c̃ 6= c.

Pedit, if c 6= ε and c̃= ε.

1−2Pedit, if c 6= ε and c̃= c.

(1a)

(1b)

(1c)

(1d)

(1e)

It consists of the following components:

(a) The insertion probability Pins(c̃|ε) in eq. (1a).
It describes how likely it is to insert a non-
empty character c̃ 6= ε and it is uniform over
the set of all characters from the alphabet Σ,
except the ε symbol.
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(b) The keep ε probability Pkeep(ε|ε) in eq. (1b).

(c) The substitution probability Psubst(c̃|c) in
eq. (1c). It is uniform over the set of all char-
acters from the alphabet Σ, except the source
character c and the ε symbol.

(d) The deletion probability Pdel(ε|c) in eq. (1d).

(e) The keep probability Pkeep(c|c) in eq. (1e).

Equations (1a) and (1b) correspond to the row in
the character confusion matrix Γ, where c= ε and
form a valid probability distribution:

Pkeep(ε|ε) +
∑

c̃∈Σ\{ε}

Pins(c̃|c) = 1.

Similarly, eqs. (1c) to (1e) correspond to the rows
in the character confusion matrix Γ, where c ∈
Σ\{ε}, and are also valid probability distributions:

Pdel(ε|c) + Pkeep(c|c) +
∑

c̃∈Σ\{c, ε}

Psubst(c̃|c) = 1

Finally, for comparison, we present visualiza-
tions of the confusion matrices used in our vanilla
(Figure 7a) and OCR error models (Figure 7b).

B Extended evaluation results

B.1 Sensitivity Analysis

In this section, we present the extended version of
our sensitivity study (§4.3). Figure 8 summarizes
the results on the synthetic data distribution with
various test- and training-time noise levels (ηtest
and ηtrain, respectively) and weighting factors α.
We noticed a similar trend as in our initial analysis.
As the level of noise ηtest increases, the overall ac-
curacy decreases, but this trend is less pronounced
for α 6= 0. At the same time, the gap between
the models trained with and without our auxiliary
objectives becomes larger.

B.2 Qualitative Analysis

In this section, we compared the outputs generated
by the baseline models trained with and without
our auxiliary training objectives (Table 2). We
found that the NAT method improved robustness
to capitalization errors (the first and the fourth row
in Table 2a) as well as to substitutions (the second,
the third and the fifth row in Table 2a and the first,
the second, the fourth and the fifth row in Table 2b),
deletions (the fifth row in Table 2a) and insertions

of characters (the third and the fifth row in Table 2b).
Moreover, it better recognized the semantics of the
sentence in the third row of Table 2a, where the
location name was creatively rewritten (Brazland
instead of Brazil).

C Hyper-parameters

We present the detailed hyper-parameters of the
sequence labeling model f(x) used in our exper-
iments (§4). Note that dropout was applied both
before and after the LSTM layer (Table 3).

Parameter name Parameter value

Tagging schema BIOES
Mini batch size 32
Max. epochs 100
LSTM # hidden layers 1
LSTM # hidden units 256
Optimizer SGD
Initial learning rate 0.1
Learning rate anneal factor 0.5
Minimum learning rate 0.0001
Word dropout level 0.05
Variational dropout level 0.5
Patience 3

Table 3: Hyper-parameters of the sequence labeling
model f(x) used in our experiments.

D Data Set Statistics and Estimated
Error Rates

In this section, we present the detailed statistics of
the data sets used in our NER experiments (Table 4).
Following Akbik et al. (2018), we used the revisited
version of German CoNLL 2003, which was pre-
pared in 2006 and is believed to be more accurate,
as the previous version was done by non-native
speakers14. Moreover, we used only the inner layer
of annotation for GermEval 2014.

Finally, in Table 5, we report estimated error
rates for all data sets and all noising procedures
used in our experiments.

14The revisited annotations are available on the official
website of the CoNLL 2003 shared task: https://www.
clips.uantwerpen.be/conll2003/ner/.

https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
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1.
Reference result 7-1 Raul <B-PER> Gonzalez <E-PER> 7-1 Juan <B-PER> Pizzi <E-PER>
NAT output 7-1 raul <B-PER> gonzalez <E-PER> 7-1 juan <B-PER> Pizzi <E-PER>
Baseline output 7-1 raul gonzalez <S-PER> 7-1 juan Pizzi <S-PER>

2.
Reference result 6. Heidi <B-PER> Zurbriggen <E-PER> ( Switzerland <S-LOC> ) 153
NAT output 6. Heidi <B-PER> Zurbriggen <E-PER> ( swizzerland <S-LOC> ) 153
Baseline output 6. Heidi <B-PER> Zurbriggen <E-PER> ( swizzerland ) 153

3.
Reference result Plastic surgery gets boost in Brazil <S-LOC> .
NAT output Plastic surgury hets boost is Brazland <S-LOC> .
Baseline output Plastic surgury hets boost is Brazland <S-PER> .

4.
Reference result Waltraud <B-PER> Zimmer <E-PER> , Rödermark-Ober-Roden <S-LOC>
NAT output Waltraud <B-PER> zimmer <E-PER> , Rödermark-Ober-Roden <S-LOC>
Baseline output Waltraud <S-PER> zimmer , Rödermark-Ober-Roden <S-LOC>

5.
Reference result Deutschland <S-LOC> ist noch nicht Teil der Reiseroute . "
NAT output Deutshland <S-LOC> is nach nich Teil der Reiseroute . "
Baseline output Deutshland <S-PER> is nach nich Teil der Reiseroute . "

(a) Misspellings.

1.
Reference result Hapoel <B-ORG> Jerusalem <E-ORG> 12 4 1 7 10 18 13
NAT output Hapoel <B-ORG> lerusalem <E-ORG> I2 A 1 7 10 18 13
Baseline output Hapoel <S-ORG> lerusalem I2 A 1 7 10 18 13

2.
Reference result SOCCER - SPANISH <S-MISC> FIRST DIVISION RESULT / STANDINGS .
NAT output SOCCER - SPANlSH <S-MISC> FIRST DIVISiOW RESULT / STA’DINGS .
Baseline output SOCCER - SPANlSH <S-PER> FIRST DIVISiOW RESULT / STA’DINGS .

3.
Reference result EU <S-ORG> , Poland <S-LOC> agree on oil import tariffs .
NAT output EU <S-ORG> , Po’land <S-LOC> agree on oil import tarifs .
Baseline output EU <S-ORG> , Po’land <S-ORG> agree on oil import tarifs .

4.
Reference result Schlamm scheint zu helfen - Yahoo <B-ORG> ! <E-ORG>
NAT output Schlamm scheint zu helfen - Yaho0 <B-ORG> ! <E-ORG>
Baseline output Schlamm scheint zu helfen - Yaho0 <S-PER> !

5.
Reference result Fachverband <B-ORG> für <I-ORG> Hauswirtschaft <E-ORG> :
NAT output Fachverbandi <B-ORG> für <I-ORG> Hauswi’tschaTt <E-ORG> :
Baseline output Fachverbandi für Hauswi’tschaTt :

(b) OCR errors.

Table 2: Outputs produced by the models trained with and without our auxiliary NAT objectives (NAT output and
Baseline output, respectively). We demonstrate examples that contain misspellings and OCR errors, where the
models trained with the auxiliary NAT objectives correctly recognized all tags, while the baseline models either
misclassified or completely missed some entities.
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Train Dev Test Total

Sentences 14,041 3,250 3,453 20744
Tokens 203,621 51,362 46,435 301418
PER 6,600 1,842 1,617 10059
LOC 7,140 1,837 1,668 10645
ORG 6,321 1,341 1,661 9323
MISC 3,438 922 702 5062

(a) English CoNLL 2003.

Train Dev Test Total

Sentences 12,705 3,068 3,160 18933
Tokens 207,484 51,645 52,098 311227
PER 2,801 1,409 1,210 5420
LOC 4,273 1,216 1,051 6540
ORG 2,154 1,090 584 3828
MISC 780 216 206 1202

(b) German CoNLL 2003.

Train Dev Test Total

Sentences 24,000 2,200 5,100 31300
Tokens 452,853 41,653 96,499 591005
PER 7,679 711 1,639 10029
PER-deriv 62 2 11 75
PER-part 184 18 44 246
LOC 8,281 763 1,706 10750
LOC-deriv 2,808 235 561 3604
LOC-part 513 52 109 674
ORG 5,255 496 1,150 6901
ORG-deriv 41 3 8 52
ORG-part 805 91 172 1068
MISC 3,024 269 697 3990
MISC-deriv 236 16 39 291
MISC-part 190 18 42 250

(c) GermEval 2014.

Table 4: Statistics of the data sets used in our NER
experiments (§4). We present statistics of the train-
ing (Train) development (Dev) and test (Test) sets,
including the number of sentences, tokens, and enti-
ties: person names (PER), locations (LOC), organi-
zations (ORG) and miscellaneous (MISC). The Ger-
mEval 2014 data set defines two additional fine-grained
sub-labels: ”-part” and ”-deriv” that mark derivation
and compound words, respectively, which stand in di-
rect relation to Named Entities.

OCR noise Mis-
spellings†

Mis-
spellings‡

English CoNLL 2003 8.9% 16.5% 9.8%
German CoNLL 2003 9.0% 8.3% 8.0%
GermEval 2014 9.3% 8.6% 8.2%

(a) Character Error Rates.

OCR noise Mis-
spellings†

Mis-
spellings‡

English CoNLL 2003 35.6% 55.4% 48.3%
German CoNLL 2003 39.5% 26.5% 45.5%
GermEval 2014 41.2% 27.0% 47.9%

(b) Word Error Rates.

Table 5: Error rate estimation for different noise distri-
butions. OCR noise is modeled with the character con-
fusion matrix, whereas misspellings are induced using
look-up tables released by Belinkov and Bisk (2018)†

and Piktus et al. (2019)‡.
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(a) Vanilla error distribution used at training time (η = 20%).
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(b) Real error distribution estimated from a large document corpus using the Tesseract OCR engine.

Figure 7: Confusion matrices for the vanilla and the OCR error distributions. Each cell represents P (c̃|c). The
rows correspond to the original characters c and the columns represent the perturbed characters c̃. In this example,
we include all symbols from the alphabet of the English CoNLL 2003 data set. The vanilla noise model assigns
equal probability to all substitution errors, while the OCR error model is biased towards substitutions of characters
with similar shapes like ”I”→”l”, ”$”→”5”, ”O”→”0” or ”,”→”.”. Moreover, the vanilla model assumes
that the deletion of a character c is as likely as the sum of substitution probabilities with all non-empty symbols:
Pdel(ε|c) =

∑
c̃∈Σ\{ε} Psubst(c̃|c).
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(a) Data augmentation objective (synthetic noise: ηtest =1%)
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(b) Stability training (synthetic noise: ηtest =1%)
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(c) Data augmentation objective (synthetic noise: ηtest =5%)
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(d) Stability training objective(synthetic noise: ηtest =5%)
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(e) Data augmentation objective (synthetic noise: ηtest =10%)
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(f) Stability training objective (synthetic noise: ηtest =10%)
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(g) Data augmentation objective (synthetic noise: ηtest =20%)

OCR 1 10 20 30 40 50 60 70 80 90 100
Training noise level ( train) [%]

56
60
64
68
72
76
80
84

F1
 sc

or
e

=0.0
=0.5

=1.0
=2.0

=5.0

(h) Stability training objective (synthetic noise: ηtest =20%)

Figure 8: Extended results of our sensitivity analysis on the English CoNLL 2003 test data (§B.1). Each figure
presents the results of models trained using one of our auxiliary training objectives on the original data perturbed
with various levels of synthetic noise. The bar marked as ”OCR” represents a model trained using the OCR
noise distribution. Other bars correspond to models trained using synthetic noise distribution and different hyper-
parameters (α, ηtrain).


