# The Effect of Translationese in Machine Translation Test Sets

WMT19, Florence, 2nd of August 2019



#### Mike Zhang

#### **Antonio Toral**

Information Science Programme University of Groningen The Netherlands j.j.zhang.1@student.rug.nl CLCG University of Groningen The Netherlands a.toral.ruiz@rug.nl

- 1. What is translationese?
- 2. Translationese in MT data sets
- 3. Research Questions
- 4. Conclusions & Future work

## What is translationese?

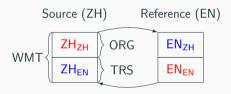
### Translated text (*translationese*) $\neq$ original text

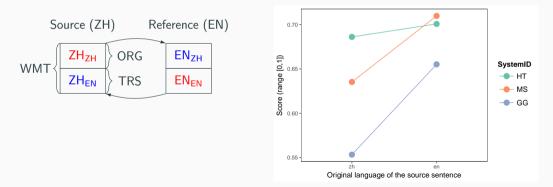
Translated text (*translationese*)  $\neq$  original text

- The differences do not indicate poor translation but rather a statistical phenomenon (Gellerstam, 1986)
- Simpler, more homogeneous, more explicit, interference from source language, aka translation universals (Baker, 1993)

## Translationese in MT data sets

• Mainly studied wrt training data (Kurokawa et al., 2009; Lembersky, 2013)


- Mainly studied wrt training data (Kurokawa et al., 2009; Lembersky, 2013)
  - (Source<sub>original</sub>, Target<sub>translationese</sub>) > (Source<sub>translationese</sub>, Target<sub>original</sub>)


- Mainly studied wrt training data (Kurokawa et al., 2009; Lembersky, 2013)
  - (Source<sub>original</sub>, Target<sub>translationese</sub>) > (Source<sub>translationese</sub>, Target<sub>original</sub>)
- Also wrt dev data, in SMT (Stymne, 2017)

- Mainly studied wrt training data (Kurokawa et al., 2009; Lembersky, 2013)
  - (Source<sub>original</sub>, Target<sub>translationese</sub>) > (Source<sub>translationese</sub>, Target<sub>original</sub>)
- Also wrt dev data, in SMT (Stymne, 2017)
  - Using tuning texts translated in the same original direction as the MT system tended to give a better score

- Mainly studied wrt training data (Kurokawa et al., 2009; Lembersky, 2013)
  - (Source<sub>original</sub>, Target<sub>translationese</sub>) > (Source<sub>translationese</sub>, Target<sub>original</sub>)
- Also wrt dev data, in SMT (Stymne, 2017)
  - Using tuning texts translated in the same original direction as the MT system tended to give a better score

## • What about test data?

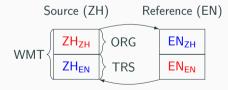




- Toral et al. (2018): translationese input favours MT systems, on Hassan et al. (2018)
- Läubli et al. (2018) in similar fashion, show stronger preference for human translations over MT when evaluating documents compared to isolated sentences, on Hassan et al. (2018)

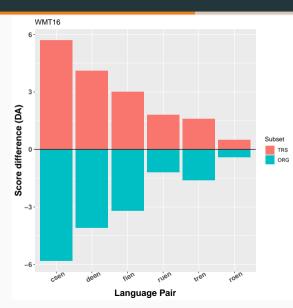
- Toral et al. (2018): translationese input favours MT systems, on Hassan et al. (2018)
- Läubli et al. (2018) in similar fashion, show stronger preference for human translations over MT when evaluating documents compared to isolated sentences, on Hassan et al. (2018)
- Taking the two works above, Graham et al. (2019) found evidence that translationese compared to original text can potentially negatively impact the accuracy of machine translation evaluations

## **Research Questions**


1. Does the use of translationese in the source side of MT test sets unfairly favour MT systems?

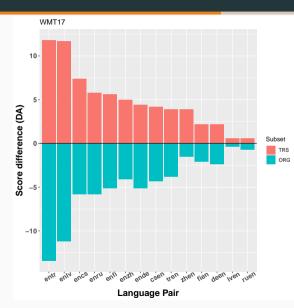
- 1. Does the use of translationese in the source side of MT test sets unfairly favour MT systems?
- 2. If the answer to RQ1 is yes, does this effect of translationese have an impact on WMT's system rankings?

- 1. Does the use of translationese in the source side of MT test sets unfairly favour MT systems?
- 2. If the answer to RQ1 is yes, does this effect of translationese have an impact on WMT's system rankings?
- 3. If the answer to RQ1 is yes, would some language pairs be more affected than others?


## This study

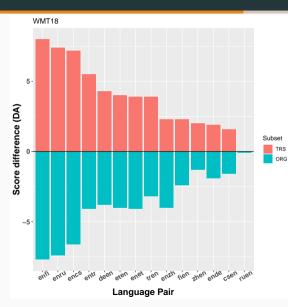
- Dataset: WMT16, WMT17, and WMT18 → 17 translation directions, 10 unique languages (Bojar et al., 2016, 2017, 2018).
- Human evaluation: Direct Assessment (DA), by bilingual crowd workers and participants (Graham et al., 2013, 2014, 2017).




RQ1: Does Translationese Affect Human Evaluation Scores?

## RQ1: favouritism for translationese, WMT16




- Score difference in DA, ORG = original input, TRS = translationese input
- Consistent trend over all language pairs

## **WMT17**



• Similar trend, TRS = inflation of scores, ORG = deflation of scores.

## **WMT18**



- Again, same trend over all language pairs
- Does translationese unfairly favour MT systems?
- Yes!

# RQ2: Do Systems' Rankings Change?

## RQ2: impact on WMT's system rankings? (e.g. $ZH \rightarrow EN$ )

**Chinese**→**English** 

|       | #  | SYSTEM             | RAW.WMT | Z.WMT  | #  | †↓             | SYSTEM             | RAW.ORG | Z.ORG  | #  | †↓             | SYSTEM             | RAW.TRS | Z.TRS  |
|-------|----|--------------------|---------|--------|----|----------------|--------------------|---------|--------|----|----------------|--------------------|---------|--------|
|       | 1  | SogouKnowing-nmt   | 73.2    | 0.209  | 1  | 2^             | xmunmt             | 71.7    | 0.167  | 1  | $1^{\uparrow}$ | uedin-nmt          | 77.1    | 0.316  |
|       |    | uedin-nmt          | 73.8    | 0.208  |    | 1↓             | SogouKnowing-nmt   | 71.9    | 0.161  |    | 1↓             | SogouKnowing-nmt   | 74.4    | 0.257  |
|       |    | xmunmt             | 72.3    | 0.184  |    | 1↓             | uedin-nmt          | 70.5    | 0.101  | 3  | $2^{\uparrow}$ | online-A           | 73.6    | 0.208  |
|       | 4  | online-B           | 69.9    | 0.113  |    | _              | online-B           | 68.7    | 0.081  |    | 1↓             | xmunmt             | 72.9    | 0.202  |
|       |    | online-A           | 70.4    | 0.109  |    | $1^{\uparrow}$ | NRC                | 69.1    | 0.064  | 5  | 1↓             | online-B           | 71.1    | 0.145  |
|       |    | NRC                | 69.8    | 0.079  | 6  | 1↓             | online-A           | 67.4    | 0.012  |    | $1^{\uparrow}$ | jhu-nmt            | 70.0    | 0.110  |
| wmt17 | 7  | jhu-nmt            | 67.9    | 0.023  | 7  | -              | jhu-nmt            | 65.8    | -0.062 |    | 1↓             | NRC                | 70.4    | 0.093  |
| vmt   | 8  | afrl-mitll-opennmt | 66.9    | -0.016 |    | $1^{\uparrow}$ | CASICT-cons        | 65.4    | -0.087 |    | _              | afrl-mitll-opennmt | 69.2    | 0.063  |
| >     |    | CASICT-cons        | 67.1    | -0.026 |    | 1↓             | afrl-mitll-opennmt | 64.5    | -0.095 |    | -              | CASICT-cons        | 68.9    | 0.036  |
|       |    | ROCMT              | 65.4    | -0.058 |    | _              | ROCMT              | 63.4    | -0.108 |    | -              | ROCMT              | 67.4    | -0.006 |
|       | 11 | Oregon-State-Uni-S | 64.3    | -0.107 |    | _              | Oregon-State-Uni-S | 62.7    | -0.162 |    | _              | Oregon-State-Uni-S | 65.9    | -0.054 |
|       | 12 | PROMT-SMT          | 61.7    | -0.209 | 12 | 3↑             | online-F           | 60.0    | -0.261 | 12 | -              | PROMT-SMT          | 64.0    | -0.137 |
|       |    | NMT-Ave-Multi-Cs   | 61.2    | -0.265 |    | 1↓             | PROMT-SMT          | 59.4    | -0.282 |    | _              | NMT-Ave-Multi-Cs   | 63.3    | -0.193 |
|       |    | UU-HNMT            | 60.0    | -0.276 |    | -              | UU-HNMT            | 58.8    | -0.301 | 14 | $2^{\uparrow}$ | online-G           | 61.1    | -0.245 |
|       |    | online-F           | 59.6    | -0.279 |    | 2↓             | NMT-Ave-Multi-Cs   | 59.2    | -0.337 |    | 1↓             | UU-HNMT            | 61.1    | -0.251 |
|       |    | online-G           | 59.3    | -0.305 |    | -              | online-G           | 57.4    | -0.363 |    | 1↓             | online-F           | 59.2    | -0.296 |

## RQ2: impact on WMT's system rankings? (e.g. $ZH \rightarrow EN$ )

-

**Chinese**→**English** 

|       | #  | SYSTEM             | RAW.WMT | Z.WMT  | #            | ↑↓             | SYSTEM             | RAW.ORG | Z.ORG  | #            | ↑↓               | SYSTEM             | RAW.TRS | Z.TRS  |
|-------|----|--------------------|---------|--------|--------------|----------------|--------------------|---------|--------|--------------|------------------|--------------------|---------|--------|
|       | 1  | SogouKnowing-nmt   | 73.2    | 0.209  | 1 ,          | 2↑             | xmunmt             | 71.7    | 0.167  | 1            | 11               | uedin-nmt          | 77.1    | 0.316  |
|       |    | uedin-nmt          | 73.8    | 0.208  | $\checkmark$ | 1↓             | SogouKnowing-nmt   | 71.9    | 0.161  | $\mathbf{N}$ | 1↓               | SogouKnowing-nmt   | 74.4    | 0.257  |
|       |    | xmunmt             | 72.3    | 0.184  | $\sim$       | 1+             | uedin-nmt          | 70.5    | 0.101  | 3            | $2^{\uparrow}$   | online-A           | 73.6    | 0.208  |
|       | 4  | online-B           | 69.9    | 0.113  |              |                | online-B           | 68.7    | 0.081  |              | 1∔               | xmunmt             | 72.9    | 0.202  |
|       |    | online-A           | 70.4    | 0.109  |              | $1^{\uparrow}$ | NRC                | 69.1    | 0.064  | 5            | $1^{\downarrow}$ | online-B           | 71.1    | 0.145  |
|       |    | NRC                | 69.8    | 0.079  | 6            | 1↓             | online-A           | 67.4    | 0.012  |              | $1^{\uparrow}$   | jhu-nmt            | 70.0    | 0.110  |
| 117   | 7  | jhu-nmt            | 67.9    | 0.023  | 7            | -              | jhu-nmt            | 65.8    | -0.062 |              | 1↓               | NRC                | 70.4    | 0.093  |
| wmt17 | 8  | afrl-mitll-opennmt | 66.9    | -0.016 |              | 1†             | CASICT-cons        | 65.4    | -0.087 |              | —                | afrl-mitll-opennmt | 69.2    | 0.063  |
| >     |    | CASICT-cons        | 67.1    | -0.026 |              | 1↓             | afrl-mitll-opennmt | 64.5    | -0.095 |              | -                | CASICT-cons        | 68.9    | 0.036  |
|       |    | ROCMT              | 65.4    | -0.058 |              | -              | ROCMT              | 63.4    | -0.108 |              | _                | ROCMT              | 67.4    | -0.006 |
|       | 11 | Oregon-State-Uni-S | 64.3    | -0.107 |              |                | Oregon-State-Uni-S | 62.7    | -0.162 |              | _                | Oregon-State-Uni-S | 65.9    | -0.054 |
|       | 12 | PROMT-SMT          | 61.7    | -0.209 | 12           | 3†             | online-F           | 60.0    | -0.261 | 12           | -                | PROMT-SMT          | 64.0    | -0.137 |
|       |    | NMT-Ave-Multi-Cs   | 61.2    | -0.265 |              | 1↓             | PROMT-SMT          | 59.4    | -0.282 |              | _                | NMT-Ave-Multi-Cs   | 63.3    | -0.193 |
|       |    | UU-HNMT            | 60.0    | -0.276 |              |                | UU-HNMT            | 58.8    | -0.301 | 14           | $2^{\uparrow}$   | online-G           | 61.1    | -0.245 |
|       |    | online-F           | 59.6    | -0.279 |              | 2↓             | NMT-Ave-Multi-Cs   | 59.2    | -0.337 |              | 1↓               | UU-HNMT            | 61.1    | -0.251 |
|       |    | online-G           | 59.3    | -0.305 |              | -              | online-G           | 57.4    | -0.363 |              | 1↓               | online-F           | 59.2    | -0.296 |

## RQ2: impact on WMT's system rankings? (e.g. $ZH \rightarrow EN$ )

-

 $Chinese \rightarrow English$ 

|       | #  | SYSTEM             | RAW.WMT | Z.WMT  | #            | ↑↓ | SYSTEM             | RAW.ORG | Z.ORG  | #         | ↑↓               | SYSTEM             | RAW.TRS | Z.TRS  |
|-------|----|--------------------|---------|--------|--------------|----|--------------------|---------|--------|-----------|------------------|--------------------|---------|--------|
|       | 1  | SogouKnowing-nmt   | 73.2    | 0.209  | 1,           | 2↑ | xmunmt             | 71.7    | 0.167  | 1         | $1^{\uparrow}$   | uedin-nmt          | 77.1    | 0.316  |
|       |    | uedin-nmt          | 73.8    | 0.208  | $\checkmark$ | 1↓ | SogouKnowing-nmt   | 71.9    | 0.161  | $\bigvee$ | 1↓               | SogouKnowing-nmt   | 74.4    | 0.257  |
|       |    | xmunmt             | 72.3    | 0.184  | $\sim$       | 1↓ | uedin-nmt          | 70.5    | 0.101  | 3         | $2^{\uparrow}$   | online-A           | 73.6    | 0.208  |
|       | 4  | online-B           | 69.9    | 0.113  |              |    | online-B           | 68.7    | 0.081  |           | 1∔               | xmunmt             | 72.9    | 0.202  |
|       |    | online-A           | 70.4    | 0.109  |              | 1  | NRC                | 69.1    | 0.064  | 5         | $1^{\downarrow}$ | online-B           | 71.1    | 0.145  |
|       |    | NRC                | 69.8    | 0.079  | 6            | 1↓ | online-A           | 67.4    | 0.012  |           | $1^{\uparrow}$   | jhu-nmt            | 70.0    | 0.110  |
| wmt17 | 7  | jhu-nmt            | 67.9    | 0.023  | 7            | -  | jhu-nmt            | 65.8    | -0.062 |           | 1↓               | NRC                | 70.4    | 0.093  |
| 1ml   | 8  | afrl-mitll-opennmt | 66.9    | -0.016 |              | 1^ | CASICT-cons        | 65.4    | -0.087 |           | _                | afrl-mitll-opennmt | 69.2    | 0.063  |
| >     |    | CASICT-cons        | 67.1    | -0.026 |              | 1↓ | afrl-mitll-opennmt | 64.5    | -0.095 |           | -                | CASICT-cons        | 68.9    | 0.036  |
|       |    | ROCMT              | 65.4    | -0.058 |              | -  | ROCMT              | 63.4    | -0.108 |           | _                | ROCMT              | 67.4    | -0.006 |
|       | 11 | Oregon-State-Uni-S | 64.3    | -0.107 |              | -  | Oregon-State-Uni-S | 62.7    | -0.162 |           | _                | Oregon-State-Uni-S | 65.9    | -0.054 |
|       | 12 | PROMT-SMT          | 61.7    | -0.209 | 12           | 31 | online-F           | 60.0    | -0.261 | 12        | -                | PROMT-SMT          | 64.0    | -0.137 |
|       |    | NMT-Ave-Multi-Cs   | 61.2    | -0.265 |              | 1↓ | PROMT-SMT          | 59.4    | -0.282 |           | _                | NMT-Ave-Multi-Cs   | 63.3    | -0.193 |
|       |    | UU-HNMT            | 60.0    | -0.276 |              |    | UU-HNMT            | 58.8    | -0.301 | 14        | $2^{\uparrow}$   | online-G           | 61.1    | -0.245 |
|       |    | online-F           | 59.6    | -0.279 |              | 2↓ | NMT-Ave-Multi-Cs   | 59.2    | -0.337 |           | 1↓               | UU-HNMT            | 61.1    | -0.251 |
|       |    | online-G           | 59.3    | -0.305 |              | -  | online-G           | 57.4    | -0.363 |           | 1↓               | online-F           | 59.2    | -0.296 |

• Clusters change:  $WMT(1,4,7,8,11,12) \rightarrow ORG(1,6,7,12) \rightarrow TRS(1,3,5,12,14)$ 

#### $Russian \rightarrow English$

|     | #  | SYSTEM              | RAW.WMT | Z.WMT  | #  | 1↓ | SYSTEM              | RAW.ORG | Z.ORG  | #  | ↑↓             | SYSTEM              | RAW.TRS | Z.TRS  |
|-----|----|---------------------|---------|--------|----|----|---------------------|---------|--------|----|----------------|---------------------|---------|--------|
|     | 1  | online-G            | 74.2    | 0.115  | 1  | 4† | PROMT-Rule-based    | 73.0    | 0.072  | 1  | -              | online-G            | 76.0    | 0.172  |
|     |    | AMU-UEDIN           | 73.3    | 0.103  |    | 1↓ | online-G            | 72.5    | 0.058  |    | -              | AMU-UEDIN           | 74.6    | 0.155  |
|     |    | online-B            | 72.8    | 0.083  |    | 1↓ | AMU-UEDIN           | 72.0    | 0.051  |    | _              | online-B            | 74.8    | 0.142  |
|     |    | NRC                 | 72.7    | 0.060  |    | 1↓ | online-B            | 70.8    | 0.025  |    | -              | NRC                 | 75.0    | 0.140  |
| :16 | 5  | PROMT-Rule-based    | 72.1    | 0.044  |    | 1↓ | NRC                 | 70.3    | -0.020 | 5  | $1^{\uparrow}$ | uedin-nmt           | 72.3    | 0.061  |
| Į,  |    | uedin-nmt           | 71.1    | 0.011  |    | -  | uedin-nmt           | 70.0    | -0.039 |    | $1^{\uparrow}$ | online-A            | 72.7    | 0.055  |
| \$  |    | online-A            | 70.8    | -0.007 |    | -  | online-A            | 68.9    | -0.069 |    | $1^{\uparrow}$ | AFRL-MITLL-Phrase   | 72.2    | 0.030  |
|     |    | AFRL-MITLL-Phrase   | 70.1    | -0.040 |    | -  | AFRL-MITLL-Phrase   | 67.9    | -0.111 | 8  | 3↓             | PROMT-Rule-based    | 71.3    | 0.016  |
|     |    | AFRL-MITLL-contrast | 69.3    | -0.071 |    | -  | AFRL-MITLL-contrast | 68.2    | -0.125 |    | -              | AFRL-MITLL-contrast | 70.5    | -0.018 |
|     | 10 | online-F            | 61.8    | -0.322 | 10 | -  | online-F            | 62.0    | -0.295 | 10 | -              | online-F            | 61.6    | -0.349 |

| Russian→E | Englis | h |
|-----------|--------|---|
|-----------|--------|---|

|     | #  | SYSTEM              | RAW.WMT | Z.WMT  | #  | 1↓ | SYSTEM              | RAW.ORG | Z.ORG  | #           | †↓             | SYSTEM              | RAW.TRS | Z.TRS  |
|-----|----|---------------------|---------|--------|----|----|---------------------|---------|--------|-------------|----------------|---------------------|---------|--------|
|     | 1  | online-G            | 74.2    | 0.115  | 1  | 4↑ | PROMT-Rule-based    | 73.0    | 0.072  | 1           |                | online-G            | 76.0    | 0.172  |
|     |    | AMU-UEDIN           | 73.3    | 0.103  | /  | 1‡ | online-G            | 72.5    | 0.058  |             | _              | AMU-UEDIN           | 74.6    | 0.155  |
|     |    | online-B            | 72.8    | 0.083  |    | 1↓ | AMU-UEDIN           | 72.0    | 0.051  |             |                | online-B            | 74.8    | 0.142  |
|     |    | NRC                 | 72.7    | 0.060  |    | 1↓ | online-B            | 70.8    | 0.025  | $  \rangle$ |                | NRC                 | 75.0    | 0.140  |
| 116 | 5  | PROMT-Rule-based    | 72.1    | 0.044  | ľ  | 1↓ | NRC                 | 70.3    | -0.020 | 5           | 1^             | uedin-nmt           | 72.3    | 0.061  |
| m,  |    | uedin-nmt           | 71.1    | 0.011  | 1  | _  | uedin-nmt           | 70.0    | -0.039 |             | 1              | online-A            | 72.7    | 0.055  |
| N   |    | online-A            | 70.8    | -0.007 |    | -  | online-A            | 68.9    | -0.069 |             | $1^{\uparrow}$ | AFRL-MITLL-Phrase   | 72.2    | 0.030  |
|     |    | AFRL-MITLL-Phrase   | 70.1    | -0.040 |    | _  | AFRL-MITLL-Phrase   | 67.9    | -0.111 | 8           | 3↓             | PROMT-Rule-based    | 71.3    | 0.016  |
|     |    | AFRL-MITLL-contrast | 69.3    | -0.071 |    | -  | AFRL-MITLL-contrast | 68.2    | -0.125 |             |                | AFRL-MITLL-contrast | 70.5    | -0.018 |
|     | 10 | online-F            | 61.8    | -0.322 | 10 | _  | online-F            | 62.0    | -0.295 | 10          |                | online-F            | 61.6    | -0.349 |

|     | #  | SYSTEM              | RAW.WMT | Z.WMT  | #  | 1↓ | SYSTEM              | RAW.ORG | Z.ORG  | #           | †↓             | SYSTEM              | RAW.TRS | Z.TRS  |
|-----|----|---------------------|---------|--------|----|----|---------------------|---------|--------|-------------|----------------|---------------------|---------|--------|
|     | 1  | online-G            | 74.2    | 0.115  | 1  | 4↑ | PROMT-Rule-based    | 73.0    | 0.072  | 1           |                | online-G            | 76.0    | 0.172  |
|     |    | AMU-UEDIN           | 73.3    | 0.103  | 1  | 1‡ | online-G            | 72.5    | 0.058  |             |                | AMU-UEDIN           | 74.6    | 0.155  |
|     |    | online-B            | 72.8    | 0.083  | /  | 1↓ | AMU-UEDIN           | 72.0    | 0.051  |             |                | online-B            | 74.8    | 0.142  |
|     |    | NRC                 | 72.7    | 0.060  |    | 1↓ | online-B            | 70.8    | 0.025  | $  \rangle$ |                | NRC                 | 75.0    | 0.140  |
| 116 | 5  | PROMT-Rule-based    | 72.1    | 0.044  | ľ  | 1↓ | NRC                 | 70.3    | -0.020 | 5           | 1              | uedin-nmt           | 72.3    | 0.061  |
| m,  |    | uedin-nmt           | 71.1    | 0.011  |    | _  | uedin-nmt           | 70.0    | -0.039 |             | 1              | online-A            | 72.7    | 0.055  |
| 2   |    | online-A            | 70.8    | -0.007 |    | -  | online-A            | 68.9    | -0.069 |             | $1^{\uparrow}$ | AFRL-MITLL-Phrase   | 72.2    | 0.030  |
|     |    | AFRL-MITLL-Phrase   | 70.1    | -0.040 |    | _  | AFRL-MITLL-Phrase   | 67.9    | -0.111 | 8           | 3↓             | PROMT-Rule-based    | 71.3    | 0.016  |
|     |    | AFRL-MITLL-contrast | 69.3    | -0.071 |    | -  | AFRL-MITLL-contrast | 68.2    | -0.125 |             | -              | AFRL-MITLL-contrast | 70.5    | -0.018 |
|     | 10 | online-F            | 61.8    | -0.322 | 10 | _  | online-F            | 62.0    | -0.295 | 10          | _              | online-F            | 61.6    | -0.349 |

#### $Russian \rightarrow English$

• Clusters change:  $WMT(1,5,10) \rightarrow ORG(1,10) \rightarrow TRS(1,5,8,10)$ 

|     | #  | SYSTEM              | RAW.WMT | Z.WMT  | #  | †↓ | SYSTEM              | RAW.ORG | Z.ORG  | #           | ↑↓             | SYSTEM              | RAW.TRS | Z.TRS  |
|-----|----|---------------------|---------|--------|----|----|---------------------|---------|--------|-------------|----------------|---------------------|---------|--------|
|     | 1  | online-G            | 74.2    | 0.115  | 1  | 4↑ | PROMT-Rule-based    | 73.0    | 0.072  | 1           |                | online-G            | 76.0    | 0.172  |
|     |    | AMU-UEDIN           | 73.3    | 0.103  | 1  | 1+ | online-G            | 72.5    | 0.058  |             | _              | AMU-UEDIN           | 74.6    | 0.155  |
|     |    | online-B            | 72.8    | 0.083  | /  | 1↓ | AMU-UEDIN           | 72.0    | 0.051  |             |                | online-B            | 74.8    | 0.142  |
|     |    | NRC                 | 72.7    | 0.060  |    | 1↓ | online-B            | 70.8    | 0.025  |             | _              | NRC                 | 75.0    | 0.140  |
| t16 | 5  | PROMT-Rule-based    | 72.1    | 0.044  | ľ  | 1↓ | NRC                 | 70.3    | -0.020 | 5           | 1              | uedin-nmt           | 72.3    | 0.061  |
| Ĩ.  |    | uedin-nmt           | 71.1    | 0.011  | 1  | _  | uedin-nmt           | 70.0    | -0.039 | $  \rangle$ | 1              | online-A            | 72.7    | 0.055  |
| 2   |    | online-A            | 70.8    | -0.007 |    | _  | online-A            | 68.9    | -0.069 |             | $1^{\uparrow}$ | AFRL-MITLL-Phrase   | 72.2    | 0.030  |
|     |    | AFRL-MITLL-Phrase   | 70.1    | -0.040 |    | -  | AFRL-MITLL-Phrase   | 67.9    | -0.111 | 8           | 3↓             | PROMT-Rule-based    | 71.3    | 0.016  |
|     |    | AFRL-MITLL-contrast | 69.3    | -0.071 |    | -  | AFRL-MITLL-contrast | 68.2    | -0.125 |             | -              | AFRL-MITLL-contrast | 70.5    | -0.018 |
|     | 10 | online-F            | 61.8    | -0.322 | 10 | -  | online-F            | 62.0    | -0.295 | 10          |                | online-F            | 61.6    | -0.349 |

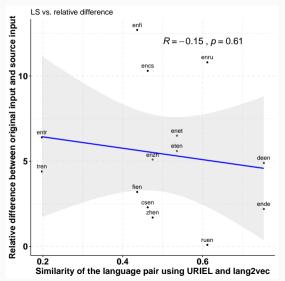
#### $Russian {\rightarrow} English$

- Clusters change:  $WMT(1,5,10) \rightarrow ORG(1,10) \rightarrow TRS(1,5,8,10)$
- So would there be ranking changes?

|     | #  | SYSTEM              | RAW.WMT | Z.WMT  | #  | †↓ | SYSTEM              | RAW.ORG | Z.ORG  | #           | ↑↓             | SYSTEM              | RAW.TRS | Z.TRS  |
|-----|----|---------------------|---------|--------|----|----|---------------------|---------|--------|-------------|----------------|---------------------|---------|--------|
|     | 1  | online-G            | 74.2    | 0.115  | 1  | 4↑ | PROMT-Rule-based    | 73.0    | 0.072  | 1           |                | online-G            | 76.0    | 0.172  |
|     |    | AMU-UEDIN           | 73.3    | 0.103  | 1  | 1+ | online-G            | 72.5    | 0.058  |             | _              | AMU-UEDIN           | 74.6    | 0.155  |
|     |    | online-B            | 72.8    | 0.083  | /  | 1↓ | AMU-UEDIN           | 72.0    | 0.051  |             |                | online-B            | 74.8    | 0.142  |
|     |    | NRC                 | 72.7    | 0.060  |    | 1↓ | online-B            | 70.8    | 0.025  |             | _              | NRC                 | 75.0    | 0.140  |
| t16 | 5  | PROMT-Rule-based    | 72.1    | 0.044  | ľ  | 1↓ | NRC                 | 70.3    | -0.020 | 5           | 1              | uedin-nmt           | 72.3    | 0.061  |
| Ĩ.  |    | uedin-nmt           | 71.1    | 0.011  | 1  | _  | uedin-nmt           | 70.0    | -0.039 | $  \rangle$ | 1              | online-A            | 72.7    | 0.055  |
| 2   |    | online-A            | 70.8    | -0.007 |    | _  | online-A            | 68.9    | -0.069 |             | $1^{\uparrow}$ | AFRL-MITLL-Phrase   | 72.2    | 0.030  |
|     |    | AFRL-MITLL-Phrase   | 70.1    | -0.040 |    | -  | AFRL-MITLL-Phrase   | 67.9    | -0.111 | 8           | 3↓             | PROMT-Rule-based    | 71.3    | 0.016  |
|     |    | AFRL-MITLL-contrast | 69.3    | -0.071 |    | -  | AFRL-MITLL-contrast | 68.2    | -0.125 |             | -              | AFRL-MITLL-contrast | 70.5    | -0.018 |
|     | 10 | online-F            | 61.8    | -0.322 | 10 | -  | online-F            | 62.0    | -0.295 | 10          |                | online-F            | 61.6    | -0.349 |

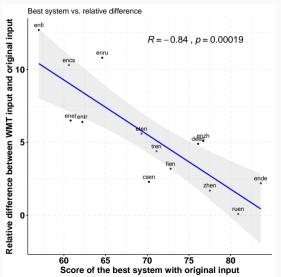
#### $Russian \rightarrow English$

- Clusters change:  $WMT(1,5,10) \rightarrow ORG(1,10) \rightarrow TRS(1,5,8,10)$
- So would there be ranking changes?
- Yes, and clusters too!


|     | #  | SYSTEM              | RAW.WMT | Z.WMT  | #  | †↓ | SYSTEM              | RAW.ORG | Z.ORG  | #           | ↑↓             | SYSTEM              | RAW.TRS | Z.TRS  |
|-----|----|---------------------|---------|--------|----|----|---------------------|---------|--------|-------------|----------------|---------------------|---------|--------|
|     | 1  | online-G            | 74.2    | 0.115  | 1  | 4↑ | PROMT-Rule-based    | 73.0    | 0.072  | 1           |                | online-G            | 76.0    | 0.172  |
|     |    | AMU-UEDIN           | 73.3    | 0.103  | 1  | 1+ | online-G            | 72.5    | 0.058  |             | _              | AMU-UEDIN           | 74.6    | 0.155  |
|     |    | online-B            | 72.8    | 0.083  | /  | 1↓ | AMU-UEDIN           | 72.0    | 0.051  |             |                | online-B            | 74.8    | 0.142  |
|     |    | NRC                 | 72.7    | 0.060  |    | 1↓ | online-B            | 70.8    | 0.025  | $  \rangle$ | _              | NRC                 | 75.0    | 0.140  |
| t16 | 5  | PROMT-Rule-based    | 72.1    | 0.044  | ľ  | 1↓ | NRC                 | 70.3    | -0.020 | 5           | 1              | uedin-nmt           | 72.3    | 0.061  |
| Ĩ.  |    | uedin-nmt           | 71.1    | 0.011  | 1  | _  | uedin-nmt           | 70.0    | -0.039 |             | 1              | online-A            | 72.7    | 0.055  |
| 2   |    | online-A            | 70.8    | -0.007 |    | _  | online-A            | 68.9    | -0.069 |             | $1^{\uparrow}$ | AFRL-MITLL-Phrase   | 72.2    | 0.030  |
|     |    | AFRL-MITLL-Phrase   | 70.1    | -0.040 |    | -  | AFRL-MITLL-Phrase   | 67.9    | -0.111 | 8           | 3↓             | PROMT-Rule-based    | 71.3    | 0.016  |
|     |    | AFRL-MITLL-contrast | 69.3    | -0.071 |    | -  | AFRL-MITLL-contrast | 68.2    | -0.125 |             | -              | AFRL-MITLL-contrast | 70.5    | -0.018 |
|     | 10 | online-F            | 61.8    | -0.322 | 10 | -  | online-F            | 62.0    | -0.295 | 10          |                | online-F            | 61.6    | -0.349 |

#### $Russian {\rightarrow} English$

- Clusters change:  $WMT(1,5,10) \rightarrow ORG(1,10) \rightarrow TRS(1,5,8,10)$
- So would there be ranking changes?
- Yes, and clusters too!
- However, half data


## RQ3: Are Some Languages More Affected?

#### Research Question 3: is there a trend?



- Language similarity (lang2vec (Littell et al., 2017)) vs. relative difference between WMT input and ORG input
- Low correlation

#### Research Question 3: is there a trend?



- Highest scoring system (with only ORG input) vs. relative difference between WMT input and ORG input
- High correlation!
- High differences could be due to underresourced languages

## **Conclusions & Future work**



• **Translationese**: if present, it inflates DA scores. If removed, it lowers DA scores.

- **Translationese**: if present, it inflates DA scores. If removed, it lowers DA scores.
- Translation quality:

- **Translationese**: if present, it inflates DA scores. If removed, it lowers DA scores.
- Translation quality:
  - Correlation between the effect of translationese and the translation quality attainable for translation directions.

- **Translationese**: if present, it inflates DA scores. If removed, it lowers DA scores.
- Translation quality:
  - Correlation between the effect of translationese and the translation quality attainable for translation directions.
  - The effect of translationese tends to be high when an under-resourced language is present.

- **Translationese**: if present, it inflates DA scores. If removed, it lowers DA scores.
- Translation quality:
  - Correlation between the effect of translationese and the translation quality attainable for translation directions.
  - The effect of translationese tends to be high when an under-resourced language is present.
- **Recommendations (?)**: the WMT organizers have addressed this issue by providing completely source-language native test sets for WMT19.

- **Translationese**: if present, it inflates DA scores. If removed, it lowers DA scores.
- Translation quality:
  - Correlation between the effect of translationese and the translation quality attainable for translation directions.
  - The effect of translationese tends to be high when an under-resourced language is present.
- **Recommendations (?)**: the WMT organizers have addressed this issue by providing completely source-language native test sets for WMT19.
- Future work: characteristics of translationese in the WMT test sets.


## Ack. WMT: for providing the data

## Ack. WMT: for providing the data

# Thank you!

# **Questions?**

Mike Zhang & Antonio Toral j.j.zhang.1@student.rug.nl — a.toral.ruiz@rug.nl



## References

- M. Baker. Corpus linguistics and translation studies: Implications and applications. *Text and technology: In honour of John Sinclair*, 233:250, 1993.
- O. Bojar et al. Findings of the 2016 conference on machine translation. In *Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers*, volume 2, pages 131–198, 2016.

### References ii

- O. Bojar et al. Findings of the 2017 conference on machine translation (wmt17).
  In Proceedings of the Second Conference on Machine Translation, pages 169–214, 2017. URL http://www.statmt.org/wmt17/pdf/WMT17.pdf.
- O. Bojar et al. Findings of the 2018 conference on machine translation (wmt18). In Proceedings of the Third Conference on Machine Translation, pages 272-303, 2018. URL http://aclweb.org/anthology/W18-6401.pdf.
- M. Gellerstam. Translationese in swedish novels translated from english. *Translation studies in Scandinavia*, 1:88–95, 1986.
- Y. Graham, B. Haddow, and P. Koehn. Translationese in machine translation evaluation. *arXiv preprint arXiv:1906.09833*, 2019.

- Y. Graham et al. Continuous measurement scales in human evaluation of machine translation. In *Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse*, pages 33–41, 2013.
- Y. Graham et al. Is machine translation getting better over time? In *Proceedings* of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 443–451, 2014.
- Y. Graham et al. Can machine translation systems be evaluated by the crowd alone. *Natural Language Engineering*, 23(1):3–30, 2017.

## References iv

- H. Hassan et al. Achieving Human Parity on Automatic Chinese to English News Translation. 2018. URL https://www.microsoft.com/en-us/research/publication/ achieving-human-parity-on-automatic-chinese-to-english-news-transla https://arxiv.org/abs/1803.05567.
- D. Kurokawa et al. Automatic detection of translated text and its impact on machine translation. *Proceedings of MT-Summit XII*, pages 81–88, 2009. URL https://arxiv.org/pdf/1808.07048.pdf.
- S. Läubli, R. Sennrich, and M. Volk. Has machine translation achieved human parity? a case for document-level evaluation. arXiv preprint arXiv:1808.07048, 2018. URL https://arxiv.org/pdf/1808.07048.pdf.

#### References v

- G. Lembersky. The Effect of Translationese on Statistical Machine Translation. University of Haifa, Faculty of Social Sciences, Department of Computer Science, 2013.
- P. Littell et al. Uriel and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers*, pages 8–14, 2017.
- S. Stymne. The effect of translationese on tuning for statistical machine translation. In *The 21st Nordic Conference on Computational Linguistics*, pages 241–246, 2017.

A. Toral et al. Attaining the unattainable? reassessing claims of human parity in neural machine translation. arXiv preprint arXiv:1808.10432, 2018. URL https://arxiv.org/abs/1808.10432.

|                                  | With Ties |        |        | Mean   |       | Without Ties |        |        |                                  |
|----------------------------------|-----------|--------|--------|--------|-------|--------------|--------|--------|----------------------------------|
| Language Direction               | WMT16     | WMT17  | WMT18  | iviean |       | WMT16        | WMT17  | WMT18  | Language Direction               |
| $Romanian \to English\dagger$    | 1.000*    | -      | -      | 1.000  | 1.000 | 1.000*       | -      | -      | $Romanian \to English ~ \dagger$ |
| $Turkish \to English$            | 0.983*    | 0.948* | 1.000* | 0.977  | 1.000 | 1.000*       | 1.000* | 1.000* | $Czech \to English$              |
| $Finnish \to English$            | 0.943*    | 0.966* | 1.000* | 0.970  | 0.978 | -            | -      | 0.978* | $English \to Estonian ~ \dagger$ |
| $Czech \to English$              | 0.929*    | 1.000* | 0.949* | 0.959  | 0.956 | -            | -      | 0.956* | $Estonian \to English ~ \dagger$ |
| $German \to English$             | 0.979*    | 0.939* | 0.906* | 0.941  | 0.944 | -            | 0.944* | -      | $Latvian \to English ~\dagger$   |
| $English \to Czech$              | -         | 0.904* | 0.949* | 0.927  | 0.929 | -            | 0.929* | 0.929* | $English \to Turkish$            |
| $Latvian \to English\dagger$     | -         | 0.921* | -      | 0.921  | 0.917 | -            | 0.889* | 0.944* | $English \to Russian$            |
| $English \to Finnish$            | -         | 0.868* | 0.968* | 0.918  | 0.898 | -            | 0.927* | 0.868* | $English \to Chinese$            |
| $English \to Russian$            | -         | 0.873* | 0.935* | 0.904  | 0.882 | -            | 0.882* | -      | $English \to Latvian ~\dagger$   |
| $Chinese \to English$            | -         | 0.923* | 0.882* | 0.903  | 0.869 | 0.733*       | 0.944* | 0.929* | $Russian \to English$            |
| $English \to German$             | -         | 0.863* | 0.856* | 0.860  | 0.852 | 1.000*       | 1.000* | 0.556* | $Finnish \to English$            |
| $English \to Estonian^{\dagger}$ | -         | -      | 0.845* | 0.845  | 0.848 | 0.833*       | 0.911* | 0.800* | $Turkish \to English$            |
| $Estonian \to English \dagger$   | -         | -      | 0.830* | 0.830  | 0.784 | -            | 0.633* | 0.934* | $Chinese \to English$            |
| $English \to Chinese$            | -         | 0.847* | 0.789* | 0.818  | 0.726 | -            | 0.451* | 1.000* | $English \to Czech$              |
| $English \to Turkish$            | -         | 0.890* | 0.734* | 0.812  | 0.713 | 0.911*       | 0.345  | 0.883* | $German \to English$             |
| $Russian \to English$            | 0.557     | 0.845* | 0.890* | 0.764  | 0.675 | -            | 0.817* | 0.533* | $English \to German$             |
| $English \to Latvian ~ \dagger$  | -         | 0.718* | -      | 0.718  | 0.637 | -            | 0.970* | 0.303  | $English \to Finnish$            |