
SECTOR: A Neural Model for Coherent 
Topic Segmentation and Classification

Sebastian Arnold, Rudolf Schneider, Philippe Cudré-Mauroux*, Felix A. Gers, Alexander Löser

sarnold@beuth-hochschule.de
@sebastianarnold

Transactions of the Association for 
Computational Linguistics (TACL) Vol.7

ACL 2019, Florence, Italy      29.07.2019

Beuth University of Applied Sciences 
Berlin, Germany

*eXascale Infolab
University of Fribourg
Fribourg, Switzerland



Sebastian Arnold

Challenge: understand the topics and structure of a document
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Treatment

Diagnosis

Symptoms

Causes

“Type 1 diabetes”DISEASE

How can we represent a document 
with respect to the author’s emphasis?

➔ topical information [Ma18]

(e.g. semantic class labels)
➔ structural information [Ag09, Gla16]

(e.g. coherent passages) 
➔ in latent vector space [Le14, Bha16]

(i.e. distributional embedding)
➔ required for TDT, QA & IR

downstream tasks [All02, Di07, Coh18]
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Task: split a document into coherent sections with topic labels
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We aim to detect topics in a document that are expressed by the author as a 
coherent sequence of sentences (e.g., a passage or book chapter).
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WikiSection: Wiki authors provide topics as section headings
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https://github.com/sebastianarnold/WikiSection

en_disease de_disease en_city de_city

3.6k English 
articles

2.3k 
German 
articles

19.5k 
English 
articles

12.5k 
German 
articles

8.5k 
headings

6.1k 
headings

23.0k 
headings

12.2k 
headings

27 topics 
(94.6%)

25 topics 
(89.5%)

30 topics 
(96.6%)

27 topics 
(96.1%)
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SECTOR sequential prediction approach

● Transform a document of N sentences s1...N into N topic distributions  y1...N 
● Predict M sections T1...M based on coherence of the network’s weights
● Assign section-level topic labels y1...M 

Number and length 
of sections is unknown!
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Objective: maximize the log likelihood of model 
parameters Θ per document on sentence-level

● Requires the entire document as input

● Long range dependencies

● Focus on sharp distinction at topic shifts

Network architecture (0/4) – Overview
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Input: Vector representation of a full document

● Split text into sequence of sentences s1...N
● Encode sentence vectors x1...N using

○ Bag-of-words (~56k english words)
○ Bloom filter (4096 bits) [Se17] or
○ Pre-trained sentence embeddings 

[Mik13, Aro17] (128 dim)
● Use sentences as time-steps

Network architecture (1/4) – Sentence encoding
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Encoder: Bidirectional Long Short-Term Memory 
(BLSTM) [Ho97, Ge00, Gra12] + dense embedding layer

● independent fw and bw parameters Θ,Θ
helps to sharpen left/right context

● embedding layer captures latent topics

● 2x256 LSTM cells, 128 dim embedding layer, 
16 docs per batch, 0.5 dropout, ADAM opt.

Network architecture (2/4) – Topic embedding
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Output layer: Classification

● Decodes target probabilities
● Human-readable topic labels for 2 Tasks:

○ topic classes y1...N (25–30 topics)
disease.symptom

○ headline words z1...N (1.5–2.8k words)

[ signs, symptoms]

Network architecture (3/4) – Topic classification
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Segmentation: based on topic coherence

● deviation d
k
: stepwise “movement” 

of the embedding between two sentences 

Network architecture (4/4) – Segmentation
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We use the topic embedding deviation (emd) d
k
 to start new segments on peaks.

● Idea adapted from image processing: we apply Laplacian-of-Gaussian 
edge detection [Zi98] to find local maxima on the emd curve

● Steps: dimensionality reduction (PCA), Gaussian smoothing, local maxima

● Bidirectional deviation (bemd) on fw and bw layers allows for sharper separation

Coherent segmentation using edge detection
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Experiments with 20 different models on 8 datasets

Sentence Classification Baselines: ParVec [Le14], CNN [Kim14]

Segmentation Models: C99 [Choi00], TopicTiling [Rie12], BayesSeg [Eis08], TextSeg [Kosh18]
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dataset articles article type headings topics segments

WikiSection 38k 
train/test

German/English
diseases and cities

X X X

Wiki-50 [Kosh18] 50 test English generic X X

Cities/Elements 
[Chen09]

130 test English cities and 
chemicals (lowercase)

X

Clinical Textbook 
[Eis08]

227 test English clinical X X



Sebastian Arnold

Experiment 1: segmentation and single-label classification
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Segment on sentence-level and assign one of 25–30 supervised topic labels (F1)
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Experiment 2: segmentation and multi-label classification
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Segment on sentence-level and rank 1.0k–2.8k ‘noisy’ topic words per section (MAP)
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Experiment 3: segmentation without topic prediction (cross-dataset)
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P
k
 score – lower is better
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Insights: SECTOR captures topic distributions coherently

Topic predictions on sentence level – top: ParVec [Le14] – bottom: SECTOR
Segmentation – left: newlines in text (\n) – right: embedding deviation (emd)
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SECTOR prediction on par with Wiki authors for “dermatitis”

Source: https://en.wikipedia.org/w/index.php?title=Atopic_dermatitis&diff=786969806&oldid=772576326
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Conclusion and future work

SECTOR is designed as a building block for 
document-level knowledge representation

● Reading sentences in document context 
is an important step to capture both 
topical and structural information

● Training the topic embedding with 
distant-supervised complementary 
labels improves performance  over 
self-supervised word embeddings

● In future work, we aim to apply the 
topic embedding for unsupervised 
passage retrieval and QA tasks
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q = “therapy”
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Thanks & Questions

Code and dataset available on GitHub:
https://github.com/sebastianarnold/SECTOR
https://github.com/sebastianarnold/WikiSection

Our work is funded by the German Federal Ministry of Economic 
Affairs and Energy (BMWi) under grant agreement 01MD16011E 
(Medical Allround-Care Service Solutions) and H2020 ICT-2016-1 
grant agreement 732328 (FashionBrain).
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