SECTOR: A Neural Model for Coherent **Topic Segmentation and Classification**

Sebastian Arnold, Rudolf Schneider, Philippe Cudré-Mauroux^{*}, Felix A. Gers, Alexander Löser

sarnold@beuth-hochschule.de @sebastianarnold

Transactions of the Association for **Computational Linguistics (TACL) Vol.7**

ACL 2019, Florence, Italy

Beuth University of Applied Sciences Berlin, Germany

*eXascale Infolab University of Fribourg Fribourg, Switzerland

29.07.2019

Challenge: understand the topics and structure of a document

How can we represent a document with respect to the author's emphasis?

- → topical information [Ma18]
 (e.g. semantic class labels)
- → structural information [Ag09, Gla16] (e.g. coherent passages)
- → in latent vector space [Le14, Bha16]
 (i.e. distributional embedding)
- → required for TDT, QA & IR downstream tasks [All02, Di07, Coh18]

Task: split a document into coherent sections with topic labels

We aim to detect **topics** in a document that are expressed by the author as a **coherent sequence of sentences** (e.g., a passage or book chapter).

WikiSection: Wiki authors provide topics as section headings

Contents [hide] 1 Signs and symptoms 1.1 Diabetic emergencies 1.2 Complications 2 Causes 2.1 Type 1 2.2 Type 2 2.3 Gestational diabetes 2.4 Maturity onset diabetes of the young 2.5 Other types 3 Pathophysiology 4 Diagnosis 5 Prevention 6 Management 6.1 Lifestyle 6.2 Medications 6.3 Surgery 6.4 Support 7 Epidemiology 8 History 8.1 Etymology 9 Society and culture 9.1 Naming 10 Other animals 11 Research 12 References 13 Further reading 14 External links

en_disease (27)	de_disease (25)			
treatment	therapie			
symptom	diagnose			
diagnosis	symptom			
cause	ursache			
classification	kategorisierung			
epidemiology	verlauf			
history	epidemiologie			
prognosis	geschichte			
management	prognose			
pathophysiology	praevalenz			
mechanism	vorbeugung			
prevention	fauna			
research	terminologie			
genetics	pathologie			
tomography	definition			
culture	klinik			
etymology	komplikation			
infection	genetik			
fauna	infektion			
risk	risiko			
pathology	forschung			
surgery	geographie			
screening	mensch			
medication	organe			
geography	sonstiges			
complication				

other

en_disease	de_disease	en_city	de_city
3.6k English articles	2.3k German articles	19.5k English articles	12.5k German articles
8.5k	6.1k	23.0k	12.2k
headings	headings	headings	headings
27 topics (94.6%)	25 topics	30 topics	27 topics
	(89.5%)	(96.6%)	(96.1%)

https://github.com/sebastianarnold/WikiSection

SECTOR sequential prediction approach

- Transform a document of N sentences $\mathbf{s}_{1...N}$ into N topic distributions $\overline{\mathbf{y}}_{1...N}$
- Predict M sections T_{1...M} based on coherence of the network's weights
- Assign section-level topic labels $\mathbf{y}_{1...M}$

Network architecture (0/4) – Overview

Objective: maximize the log likelihood of model parameters Θ per document on sentence-level

$$\bar{\mathcal{L}}(\Theta) = \sum_{k=1}^{N} \log p(\bar{\mathbf{y}}_k \mid \mathbf{s}_1, \dots, \mathbf{s}_N; \Theta)$$

- Requires the entire document as input
- Long range dependencies
- Focus on sharp distinction at topic shifts

Network architecture (1/4) – Sentence encoding

Input: Vector representation of a full document

- Split text into sequence of sentences **s**_{1...N}
- Encode sentence vectors $\mathbf{x}_{1...N}$ using
 - Bag-of-words (~56k english words)
 - Bloom filter (4096 bits) [Se17] or
 - Pre-trained sentence embeddings [Mik13, Aro17] (128 dim)
- Use sentences as time-steps

Network architecture (2/4) – Topic embedding

Encoder: Bidirectional Long Short-Term Memory (BLSTM) [Ho97, Ge00, Gra12] + dense embedding layer

- independent fw and bw parameters Ô,Ô
 helps to sharpen left/right context
- embedding layer captures latent topics

$$\mathcal{L}(\Theta) = \sum_{k=1}^{N} \left(\log p(\bar{\mathbf{y}}_{k} \mid \mathbf{x}_{1...k-1}; \vec{\Theta}, \Theta') + \log p(\bar{\mathbf{y}}_{k} \mid \mathbf{x}_{k+1...N}; \overleftarrow{\Theta}, \Theta') \right)$$

• 2x256 LSTM cells, 128 dim embedding layer, 16 docs per batch, 0.5 dropout, ADAM opt.

Network architecture (3/4) - Topic classification

Output layer: Classification

- Decodes target probabilities
- Human-readable topic labels for 2 Tasks:
 - **topic classes** $\overline{y}_{1...N}$ (25–30 topics) *disease.symptom*

$$\mathbf{\hat{y}}_k = \operatorname{softmax}(W_{ye}\mathbf{\vec{e}}_k + W_{ye}\mathbf{\vec{e}}_k + b_y)$$

• headline words $\overline{z}_{1...N}$ (1.5–2.8k words) [signs, symptoms]

$$\mathbf{\hat{z}}_k = \operatorname{sigmoid}(W_{ze}\mathbf{\vec{e}}_k + W_{ze}\mathbf{\vec{e}}_k + b_z)$$

Network architecture (4/4) – Segmentation

Segmentation: based on topic coherence

 deviation d_k: stepwise "movement" of the embedding between two sentences

$$\mathbf{d'}_{k} = \sqrt{\cos(\vec{\mathbf{e'}}_{k-1}, \vec{\mathbf{e'}}_{k}) \cdot \cos(\vec{\mathbf{e'}}_{k}, \vec{\mathbf{e'}}_{k+1})}$$

Coherent segmentation using edge detection

We use the topic embedding deviation (emd) d_{μ} to start new segments on peaks.

- Idea adapted from image processing: we apply Laplacian-of-Gaussian edge detection [Zi98] to find local maxima on the emd curve
- Steps: dimensionality reduction (PCA), Gaussian smoothing, local maxima
- Bidirectional deviation (bemd) on fw and bw layers allows for sharper separation

Experiments with 20 different models on 8 datasets

dataset	articles	article type	headings	topics	segments
WikiSection	38k train/test	German/English diseases and cities	Х	Х	Х
Wiki-50 [Kosh18]	50 test	English generic	Х		Х
Cities/Elements [Chen09]	130 test	English cities and chemicals (lowercase)			Х
Clinical Textbook [Eis08]	227 test	English clinical	Х		Х

Sentence Classification Baselines: ParVec [Le14], CNN [Kim14]

Segmentation Models: C99 [Choi00], TopicTiling [Rie12], BayesSeg [Eis08], TextSeg [Kosh18]

Experiment 1: segmentation and single-label classification

Segment on sentence-level and assign one of 25-30 supervised topic labels (F1)

13

Experiment 2: segmentation and multi-label classification

Segment on sentence-level and rank 1.0k-2.8k 'noisy' topic words per section (MAP)

Experiment 3: segmentation without topic prediction (cross-dataset)

Insights: SECTOR captures topic distributions coherently

Topic predictions on sentence level – top: ParVec [Le14] – bottom: SECTOR Segmentation – left: newlines in text (\n) – right: embedding deviation (emd)

SECTOR prediction on par with Wiki authors for "dermatitis"

Source: https://en.wikipedia.org/w/index.php?title=Atopic dermatitis&diff=786969806&oldid=772576326

Conclusion and future work

SECTOR is designed as a building block for **document-level knowledge representation**

- Reading sentences in document context is an important step to **capture both topical and structural information**
- Training the topic embedding with distant-supervised **complementary labels** improves performance over self-supervised word embeddings
- In future work, we aim to apply the topic embedding for unsupervised passage retrieval and QA tasks

Thanks & Questions

SECTOR: A Neural Model for Coherent Topic Segmentation and Classification

Code and dataset available on GitHub: <u>https://github.com/sebastianarnold/SECTOR</u> <u>https://github.com/sebastianarnold/WikiSection</u>

Our work is funded by the German Federal Ministry of Economic Affairs and Energy (BMWi) under grant agreement 01MD16011E (Medical Allround-Care Service Solutions) and H2020 ICT-2016-1 grant agreement 732328 (FashionBrain).

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

fashion

Speaker: Sebastian Arnold

sarnold@beuth-hochschule.de @sebastianarnold

Data Science and Text-based Information Systems (DATEXIS) Beuth University of Applied Sciences

Berlin, Germany <u>www.datexis.de</u>

References

[Ag09] Agarwal and Yu, 2009. Automatically classifying sentences in full-text biomedical articles into introduction, methods, results and discussion. Bioinformatics 25 [All02] Allan, 2002. Introduction to topic detection and tracking. Topic Detection and Tracking [Aro17] Arora et al., 2017. A simple but tough-to-beat baseline for sentence embeddings. ICLR '17 [Bha16] Bhatia et al., 2016. Automatic labelling of topics with neural embeddings. COLING '16 [Chen09] Chen et al., 2009. Global models of document structure using latent permutations. HLT-NAACL '09 [Choi00] Choi, 2000. Advances in domain independent linear text segmentation. NAACL '00 [Coh18] Cohen et al., 2018. WikiPassageQA: A benchmark collection for research on non-factoid answer passage retrieval. SIGIR '18 [Di07] Dias et al., 2007. Topic segmentation algorithms for text summarization and passage retrieval: An exhaustive evaluation. AAAI '07 [Eis08] Eisenstein and Barzilay, 2008. Bayesian unsupervised topic segmentation. EMNLP '08 [Ge00] Gers et al., 2000. Learning to forget: Continual prediction with LSTM. Neural Computation 12 [Gla16] Glavaš et al., 2016. Unsupervised text segmentation using semantic relatedness graphs. SEM '16 [Gra12] Graves, 2012. Supervised Sequence Labelling with Recurrent Neural Networks. [Ho97] Hochreiter and Schmidhuber, 1997. Long short-term memory. Neural Computation 9 [Kosh18] Koshorek at al., 2018. Text segmentation as a supervised learning task. NAACL-HLT '18 [Le14] Le and Mikolov, 2014. Distributed representations of sentences and documents. ICML '14 [Ma18] MacAvaney et al., 2018. Characterizing question facets for complex answer retrieval. SIGIR '18 [Mik13] Mikolov et al., 2013. Efficient estimation of word representations in vector space. CoRR, cs.CL/1301.3781v3. [Rie12] Riedl and Biemann, 2012. Topic-Tiling: A text segmentation algorithm based on LDA. ACL '12 Student Research Workshop [Se17] Serrà and Karatzoglou, 2017. Getting deep recommenders fit: Bloom embeddings for sparse binary input/output networks. RecSys '17 [Zi98] Ziou and Tabbone, 1998. Edge detection techniques – An overview. Pattern Recognition and Image Analysis 8