
Supplementary Material -
On the Practical Computational Power of Finite Precision RNNs

for Language Recognition

1 Simplified K-Counter Machines

We use a simplified variant of the k-counter ma-
chines (SKCM) defined in (Fischer et al., 1968),
which has no autonomous states and makes clas-
sification decisions based on a combination of its
current state and counter values. This variant con-
sumes input sequences on a symbol by symbol ba-
sis, updating at each step its state and its coun-
ters, the latter of which may be manipulated by
increment, decrement, zero, or no-ops alone, and
observed only by checking equivalence to zero.
To define the transitions of this model its accept-
ing configurations, we will introduce the following
notations:

Notations We define z : Zk → {0, 1}k as fol-
lows: for every n ∈ Zk, for every 1 ≤ i ≤
k, z(n)i = 0 iff ni = 0 (this function masks
a set of integers such that only their zero-ness
is observed). For a vector of operations, o ∈
{−1,+1,×0,×1}k, we denote by o(n) the point-
wise application of the operations to the vector
n ∈ Zk, e.g. for o = (+1,×0,×1), o((5, 2, 3)) =
(6, 0, 3).

We now define the model. An SKCM is a tuple
M = 〈Σ, Q, qo, k, δ, u, F 〉 containing:

1. A finite input alphabet Σ
2. A finite state set Q
3. An initial state q0 ∈ Q
4. k ∈ N, the number of counters
5. A state transition function

δ : Q× Σ× {0, 1}k → Q

6. A counter update function1

u : Σ→ {−1,+1,×0,×1}k

7. A set of accepting masked2 configurations

F ⊆ Q× {0, 1}k

The set of configurations of an SKCM is the set
C = Q× Zk, and the initial configuration is c0 =
(q0, 0̄) (i.e., the counters are initiated to zero). The
transitions of an SKCM are as follows: given a
configuration ct = (q, n) (n ∈ Zk) and input wt ∈
Σ, the next configuration of the SKCM is ct+1 =
(δ(q, wt, z(n)), u(wt)(n)).

The language recognized by a k-counter ma-
chine is the set of words w for which the machine
reaches an accepting configuration — a configura-
tion c = (q, n) for which (q, z(n)) ∈ F .

Note that while the counters can and are in-
creased to various non-zero values, the transition
function δ and the accept/reject classification of
the configurations observe only their zero-ness.

1.1 Computational Power of SKCMs

We show that the SKCM model can recognize the
context-free and context-sensitive languages anbn

and anbncn, but not the context free language
of palindromes, meaning its computational power
differs from the language classes defined in the
Chomsky hierarchy. Similar proofs appear in (Fis-
cher et al., 1968) for their variant of the k-counter
machine.

1 We note that in this definition, the counter update func-
tion depends only on the input symbol. In practice we see
that the LSTM is not limited in this way, and can also update
according to some state-input combinations — as can be seen
when it it is taught, for instance, the language anban We do
not explore this here however, leaving a more complete char-
acterization of the learnable models to future work.

2i.e., counters are observed only by zero-ness.



anbn: We define the following SKCM over the
alphabet {a, b}:

1. Q = {qa, qb, qr}
2. q0 = qa
3. k = 1
4. u(a) = +1, u(b) = −1
5. for any z ∈ {0, 1}:
δ(qa, a, z) = qa, δ(qa, b, z) = qb,
δ(qb, a, z) = qr, δ(qb, b, z) = qb
δ(qr, a, z) = qr, δ(qr, b, z) = qr

6. C = {(qb, 0)}

The state qr is a rejecting sink state, and the states
qa and qb keep track of whether the sequence is
currently in the “a” or “b” phase. If an a is seen
after moving to the b phase, the machine moves
to (and stays in) the rejecting state. The counter
is increased on input a and decreased on input b,
and the machine accepts only sequences that reach
the state qb with counter value zero, i.e., that have
increased and decreased the counter an equal num-
ber of times, without switching from b to a. It fol-
lows easily that this machine recognizes exactly
the language anbn.

anbncn: We define the following SKCM over
the alphabet {a, b}. As its state transition function
ignores the counter values, we use the shorthand
δ(q, σ) for δ(q, σ, z), for all z ∈ {0, 1}2.

1. Q = {qa, qb, qc, qr}
2. q0 = qa
3. k = 2
4. u(a) = (+1, ∅),
u(b) = (−1,+1),
u(c) = (∅,−1)

5. for any z ∈ {0, 1}:
δ(qa, a) = qa, δ(qa, b) = qb, δ(qa, c) = qr,
δ(qb, a) = qr, δ(qb, b) = qb, δ(qb, c) = qc,
δ(qc, a) = qr, δ(qc, b) = qr, δ(qc, c) = qc,
δ(qr, a) = qr, δ(qr, b) = qr, δ(qr, c) = qr

6. C = {(qc, 0, 0)}

By similar reasoning as that for anbn, we see
that this machine recognizes exactly the language
anbncn. We note that this construction can be ex-
tended to build an SKCM for any language of the
sort an1a

n
2 ...a

n
m, using k = m − 1 counters and

k + 1 states.

Palindromes: We prove that no SKCM can rec-
ognize the language of palindromes defined over
the alphabet {a, b, x} by the grammar S →

x|aSa|bSb. The intuition is that in order to cor-
rectly recognize this language in an one-way set-
ting, one must be able to reach a unique configura-
tion for every possible input sequence over {a, b}
(requiring an exponential number of reachable
configurations), whereas for any SKCM, the num-
ber of reachable configurations is always polyno-
mial in the input length.3

Let M be an SKCM with k counters. As its
counters are only manipulated by steps of 1 or re-
sets, the maximum and minimum values that each
counter can attain on any input w ∈ Σ∗ are +|w|
and −|w|, and in particular the total number of
possible values a counter could reach at the end
of input w is 2|w| + 1. This means that the total
number of possible configurations M could reach
on input of length n is c(n) = |Q| · (2n+ 1)k.
c(n) is polynomial in n, and so there exists a

value m for which the number of input sequences
of length m over {a, b} — 2m — is greater than
c(m). It follows by the pigeonhole principle that
there exist two input sequences w1 6= w2 ∈
{a, b}m for which M reaches the same configu-
ration. This means that for any suffix w ∈ Σ∗,
and in particular for w = x · w−11 where w−11 is
the reverse of w1, M classifies w1 · w and w2 · w
identically—despite the fact that w1 · x ·w−11 is in
the language and w2 · x · w−11 is not. This means
that M necessarily does not recognize this palin-
drome language, and ultimately that no such M
exists.

Note that this proof can be easily generalized to
any palindrome grammar over 2 or more charac-
ters, with or without a clear ‘midpoint’ marker.

2 Impossibility of Counting in Binary

While we have seen that the SRNN and GRU can-
not allocate individual counting dimensions, the
question remains whether they can count using a
more elaborate mechanism, perhaps over several
dimensions. We show here that one such mecha-
nism — a binary counter — is not implementable
in the SRNN.

For the purposes of this discussion, we first de-
fine a binary counter in an RNN.

Binary Interpretation In an RNN with hidden
state values in the range (−1, 1), the binary inter-
pretation of a sequence of dimensions d1, ..., dn
of its hidden state is the binary number obtained

3This will hold even if the counter update function can
rely on any state-input combination.



by replacing each positive hidden value in the se-
quence with a ‘1’ and each negative value with
a ‘0’. For instance: the binary interpretation of
the dimensions 3,0,1 in the hidden state vector
(0.5,−0.1, 0.3, 0.8) is 110, i.e., 6.

Binary Counting We say that the dimensions
d1, d2, ..., dn in an RNN’s hidden state implement
a binary counter in the RNN if, in every transi-
tion, their binary interpretation either increases,
decreases, resets to 0, or doesn’t change.4

A similar pair of definitions can be made for
state values in the range (0, 1).

We first note intuitively that an SRNN would
not generalize binary counting to a counter with
dimensions beyond those seen in training — as it
would have no reason to learn the ‘carry’ behav-
ior between the untrained dimensions. We prove
further that we cannot reasonably implement such
counters regardless.

We now present a proof sketch that a single-
layer SRNN with hidden size n ≥ 3 cannot im-
plement an n-dimensional binary counter that will
consistently increase on one of its input symbols.
After this, we will prove that even with helper di-
mensions, we cannot implement a counter that will
consistently increase on one input token and de-
crease on another — as we might want in order
to classify the language of all words w for which
#a(w) = #b(w).5

Consistently Increasing Counter: The proof re-
lies on the linearity of the affine transform Wx +
Uh+b, and the fact that ‘carry’ is a non-linear op-
eration. We work with state values in the range
(−1, 1), but the proof can easily be adapted to
(0, 1) by rewriting h as h′+0.5, where h′ = h−0.5
is a vector with values in the range (−0.5, 0.5).

Suppose we have a single-layer SRNN with hid-
den size n = 3, such that its entire hidden state
represents a binary counter that increases every
time it receives the input symbol a. We denote by
xa the embedding of a, and assume w.l.o.g. that

4We note that the SKCMs presented here are more re-
stricted in their relation between counter action and transi-
tion, but prefer here to give a general definition. Our proof
will be relevant even within the restrictions.

5Of course a counter could also be ‘decreased’ by in-
crementing a parallel, ‘negative’ counter, and implementing
compare-to-zero as a comparison between these two. As intu-
itively no RNN could generalize binary counting behavior to
dimensions not used in training, this approach could quickly
find both counters outside of their learned range even on a
sequence where the difference between them is never larger
than in training.

the hidden state dimensions are ordered from MSB
to LSB, e.g. the hidden state vector (1, 1,−1) rep-
resents the number 110=6.

Recall that the binary interpretation of the hid-
den state relies only on the signs of its values. We
use p and n to denote ‘some’ positive or negative
value, respectively. Then the number 6 can be rep-
resented by any state vector (p, p, n).

Recall also that the SRNN state transition is

ht = tanh(Wxt + Uht−1 + b)

and consider the state vectors (−1, 1, 1) and
(1,−1,−1), which represent 3 and 4 respectively.
Denoting b̃ = Wxa + b, we find that the constants
U and b̃ must satisfy:

tanh(U(−1, 1, 1) + b̃) = (p, n, n)

tanh(U(1,−1,−1) + b̃) = (p, n, p)

As tanh is sign-preserving, this simplifies to:

U(−1, 1, 1) = (p, n, n)− b̃
U(1,−1,−1) = (p, n, p)− b̃

Noting the linearity of matrix multiplication and
that (1,−1,−1) = −(−1, 1, 1), we obtain:

U(−1, 1, 1) = U(−(1,−1,−1)) = −U(1,−1,−1)

(p, n, n)− b̃ = b̃− (p, n, p)

i.e. for some assignment to each p and n, 2b̃ =
(p, n, n) + (p, n, p), and in particular b̃[1] < 0.

Similarly, for (−1,−1, 1) and (1, 1,−1), we
obtain

U(−1,−1, 1) = (n, p, n)− b̃
U(1, 1,−1) = (p, p, p)− b̃

i.e.
(n, p, n)− b̃ = b̃− (p, p, p)

or 2b̃ = (p, p, p) + (n, p, n), and in particular that
b̃[1] > 0, leading to a contradiction and proving
that such an SRNN cannot exist. The argument
trivially extends to n > 3 (by padding from the
MSB).

We note that this proof does not extend to the
case where additional, non counting dimensions
are added to the RNN — at least not without fur-
ther assumptions, such as the assumption that the
counter behave correctly for all values of these di-
mensions, reachable and unreachable. One may



argue then that, with enough dimensions, it could
be possible to implement a consistently increasing
binary counter on a subset of the SRNN’s state.6

We now show a counting mechanism that cannot
be implemented even with such ‘helper’ dimen-
sions.

Bi-Directional Counter: We show that for n ≥
3, no SRNN can implement an n-dimensional bi-
nary counter that increases for one token, σup, and
decreases for another, σdown. As before, we show
the proof explicitly for n = 3, and note that it can
be simply expanded to any n > 3 by padding.

Assume by contradiction we have such an
SRNN, with m ≥ 3 dimensions, and assume
w.l.o.g. that a counter is encoded along the first
3 of these. We use the shorthand (v1, v2, v3)c
to show the values of the counter dimensions
explicitly while abstracting the remaining state
dimensions, e.g. we write the hidden state
(−0.5, 0.1, 1, 1, 1) as (−0.5, 0.1, 1)c where c =
(1, 1).

Let xup and xdown be the embeddings of σup
and σdown, and as before denote bup = Wxup + b
and bdown = Wxdown + b. Then for some reach-
able state h1 ∈ R where the counter value is
1 (e.g., the state reached on the input sequence
σup

7)), we find that the constantsU, bdown, and bup
must satisfy:

tanh(Uh1 + bup) = (n, p, n)c1

tanh(Uh1 + bdown) = (n, n, n)c2

(i.e., σup increases the counter and updates the ad-
ditional dimensions to the values c1, while σdown

decreases and updates to c2.) Removing the sign-
preserving function tanh we obtain the constraints

Uh1 + bup = (n, p, n)sign(c1)

Uh1 + bdown = (n, n, n)sign(c2)

i.e. (bup−bdown)[0 : 2] = (n, p, n)−(n, n, n), and
in particular (bup − bdown)[1] > 0. Now consider
a reachable state h3 for which the counter value is
3. Similarly to before, we now obtain

Uh3 + bup = (p, n, n)sign(c3)

Uh3 + bdown = (n, p, n)sign(c4)

from which we get (bup − bdown)[0 : 2] =
(p, n, n) − (n, p, n), and in particular (bup −

6(By storing processing information on the additional,
‘helper’ dimensions)

7(Or whichever appropriate sequence if the counter is not
initiated to zero.)

bdown)[1] < 0, a contradiction to the previous
statement. Again we conclude that no such SRNN
can exist.

References
Patrick C. Fischer, Albert R. Meyer, and Arnold L.

Rosenberg. 1968. Counter machines and counter
languages. Mathematical systems theory, 2(3):265–
283.

https://doi.org/10.1007/BF01694011
https://doi.org/10.1007/BF01694011

