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Abstract - In this paper, we address the problem of finding a novel document descriptor based on the
covariance matrix of the word vectors of a document. Our descriptor has a fixed length, which makes it easy to
use in many supervised and unsupervised applications. We tested our novel descriptor in different tasks including
supervised and unsupervised settings. Our evaluation shows that our document covariance descriptor fits
different tasks with competitive performance against state-of-the-art methods.

Motivation Results
1. IMDB Movie Review Dataset (Choice of Embedding)
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2. Classification Benchmark
Representation \ Dataset MR CR Trec | Subj Overall
Word Embedding Coordinates Vectorized Covaraince Coordinates Mean 77.4 79.2 80 91.3 81.98
] BOW -+tf-idf weights 77.1 | 785 | 893 | 89.3 || 83.55
Two  Documents  are  represented  using  DoCov. P2vec (Le and Mikolov, 2014) | 74.8 | 78.1 | 91.8 | 905 || 83.8
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document. FastSent (Hill et al., 2016) 708 | 784 | 768 | 88.7 || 78.68
Bottom Left: The embedding of the words of the two FastSentAE (Hill etal., 2016) | 71.8 | 76.7 | 804 | 888 | 79.43
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shown. Covariance matrices are shown via the confidence SDAE (Hill et al., 2016) 67.6 | 74 77.6 | 89.3 77.13
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Bottom Right: Corresponding covariance matrices are Cov 797 1 794 | 895 | 92.8 85.35
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epresented as points in a new space COV+Bow 80.7 | 80.5 | 91.8 | 93.3 || 86.58
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Approach 3. Spearman/Pearson correlations on unsupervised
Given a d-dimensional word embedding model and an n- (relatedness) evaluations. .
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terms document. We app[y the Steps to get the document Model j News Forums | Wordnet | Twitier | Tmages | Headlines | ATl SICK
P2vec (Le and Mikolov, 2014) 0.42/0.46 0.33/0.34 0.51/0.48 0.54/0.57 0.32/0.30 0.46/0.47 0.44/0.44 0.44/0.46
VECtOI' v FastSent (Hill et al., 2016) 0.41/0.15 0.11/0.15 0.39/0.31 0.12/0.13 0.55/0.60 0.43/0.41 0.27/0.29 0.57/0.60
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1. Compute Observation Matrix O SABrembs (il 0, 2016 | 053054 | 0230023 | 050035 | 080080 | 06406 | 0AVDAT | 04304 | 047040
SDAE (Hill et al., 2016) .07/0.04 0.11/0.13 0.33/0.24 0.44/0.42 0.44/0.38 0.36/0.36 0.17/0.15 0.46/0.46
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: Conclusion
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*  We presented our novel descriptor to represent text on
2. Compute Mean Vector x any level such as sentences, paragraphs or documents.
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x T1 T2 Tq|” €R
. . different supervised and unsupervised tasks.
3. Compute Covariance Matrix C ) P p. .
, * It has fixed-length property which makes it useful for
Tx TXNXs TX1Xa different learning algorithms.
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c = . . . * our descriptor requires minimal training.
: 2 *  We do not require a encoder-decoder model or a
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. gradient descent iterations to be computed.
4. Compute vector version v . A
o0 it *  We showed competitive performance against other
1 < . .
v = vect(C) = {C Pa .fp 4 state-of-the-art methods in supervised and
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unsupervised settings.
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