Dynamic Sentence Sampling for Efficient Training of NMT

Rui Wang, Masao Utiyama, and Eiichro Sumita

National Institute of Information and Communications Technology, Kyoto, Japan

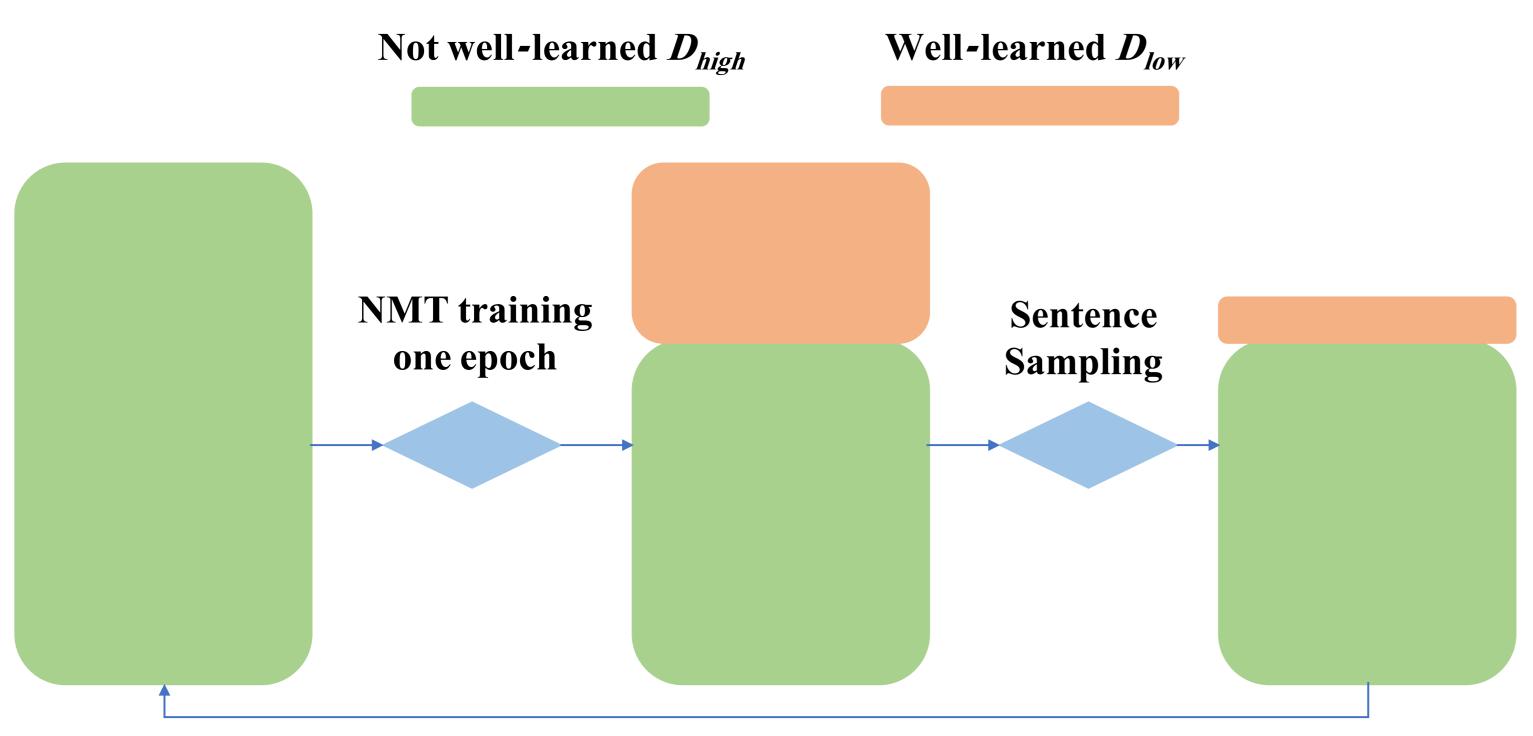
Hypotheses

NMT involves a fixed training procedure where each sentence is sampled once during each epoch:

- Some sentences are well-learned during the initial few epochs.
- Some sentences were not well learned until 10-30 epochs.
- Training these two type sentences together results in a wastage of time.

We proposes a Dynamic Sentence Sampling (DSS) method:

- We use the training cost difference as the criterion to measure which sentence has been well-learned.
- We propose two sentence sampling mechanisms: Weighted Sampling (WS) and Review Mechanism (RM).



New D' for the next epoch

Criterion

The training cost of a sentence pair $\langle x, y \rangle$ from corpus D during the ith iteration can be calculated as:

$$cost^{i}_{\langle x,y\rangle} = -\log P(y|x, \boldsymbol{\theta}).$$
 (1)

We adopt the ratio of differences (dif) between training costs of two training iterations to be the criterion,

$$dif_{\langle x,y\rangle}^{i} = \frac{cost_{\langle x,y\rangle}^{i-1} - cost_{\langle x,y\rangle}^{i}}{cost_{\langle x,y\rangle}^{i-1}}.$$
 (2)

Dynamic Sentence Sampling (DSS)

(1) Weighted Sampling (WS)

Weighted sampling without any replacement was used to select a small subset, such as 80% of the entire corpus, as the corpus D_{ws}^{i+1} to perform the subsequent iteration.

$$J_{ws} = \sum_{\langle x,y\rangle \in D_{ws}} -\log P(y|x, \boldsymbol{\theta}). \tag{3}$$

(2) Review Mechanism (RM)

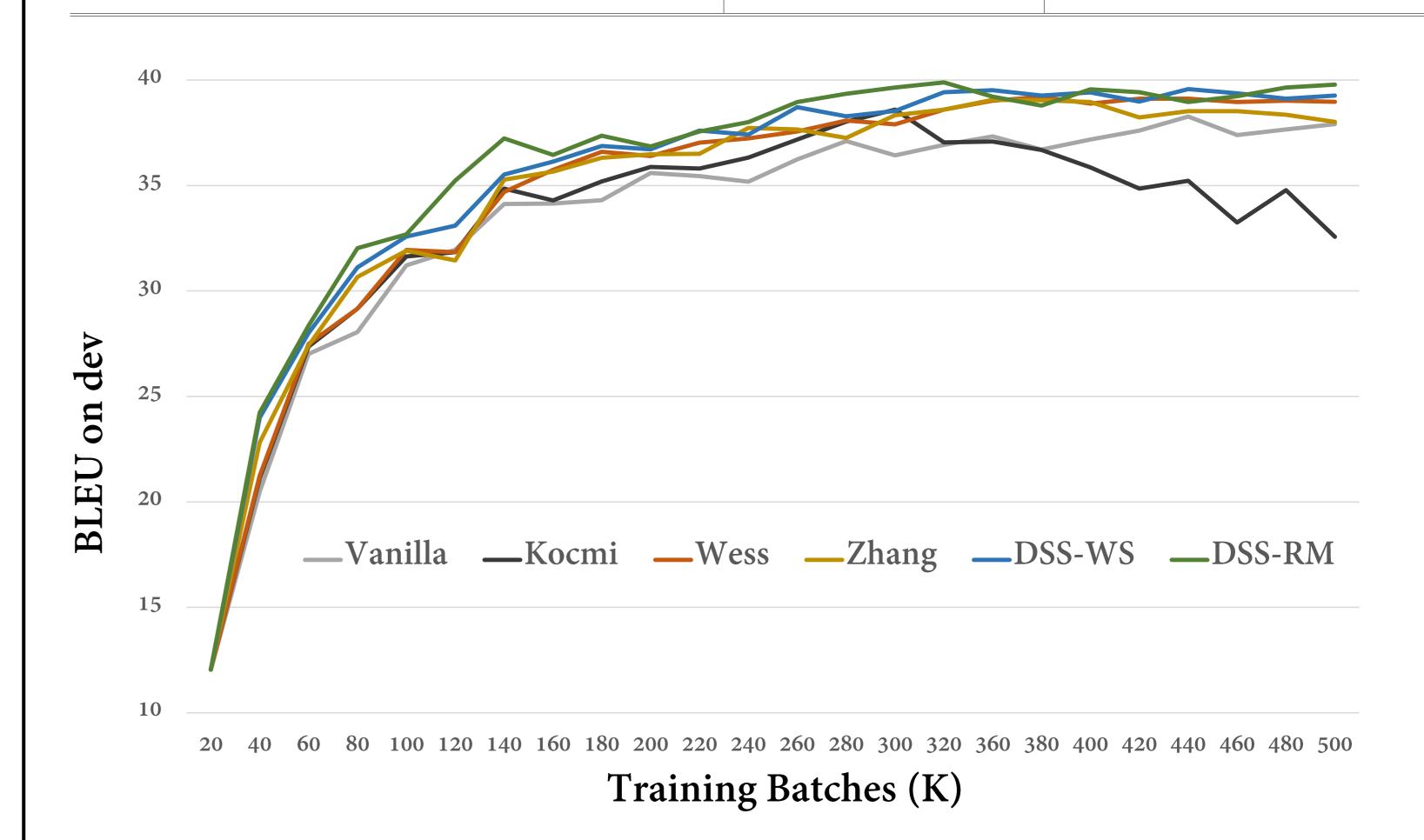
To prevent the loss of the knowledge that was obtained from the D_{low} group during NMT, a small percentage λ , such as 10%, of the D_{low} group is sampled as the knowledge to be reviewed.

$$J_{rm} = \sum_{\langle x,y\rangle \in D_{high}} -\log P(y|x,\boldsymbol{\theta}) + \sum_{\langle x,y\rangle \in \lambda D_{low}} -\log P(y|x,\boldsymbol{\theta}). \tag{4}$$

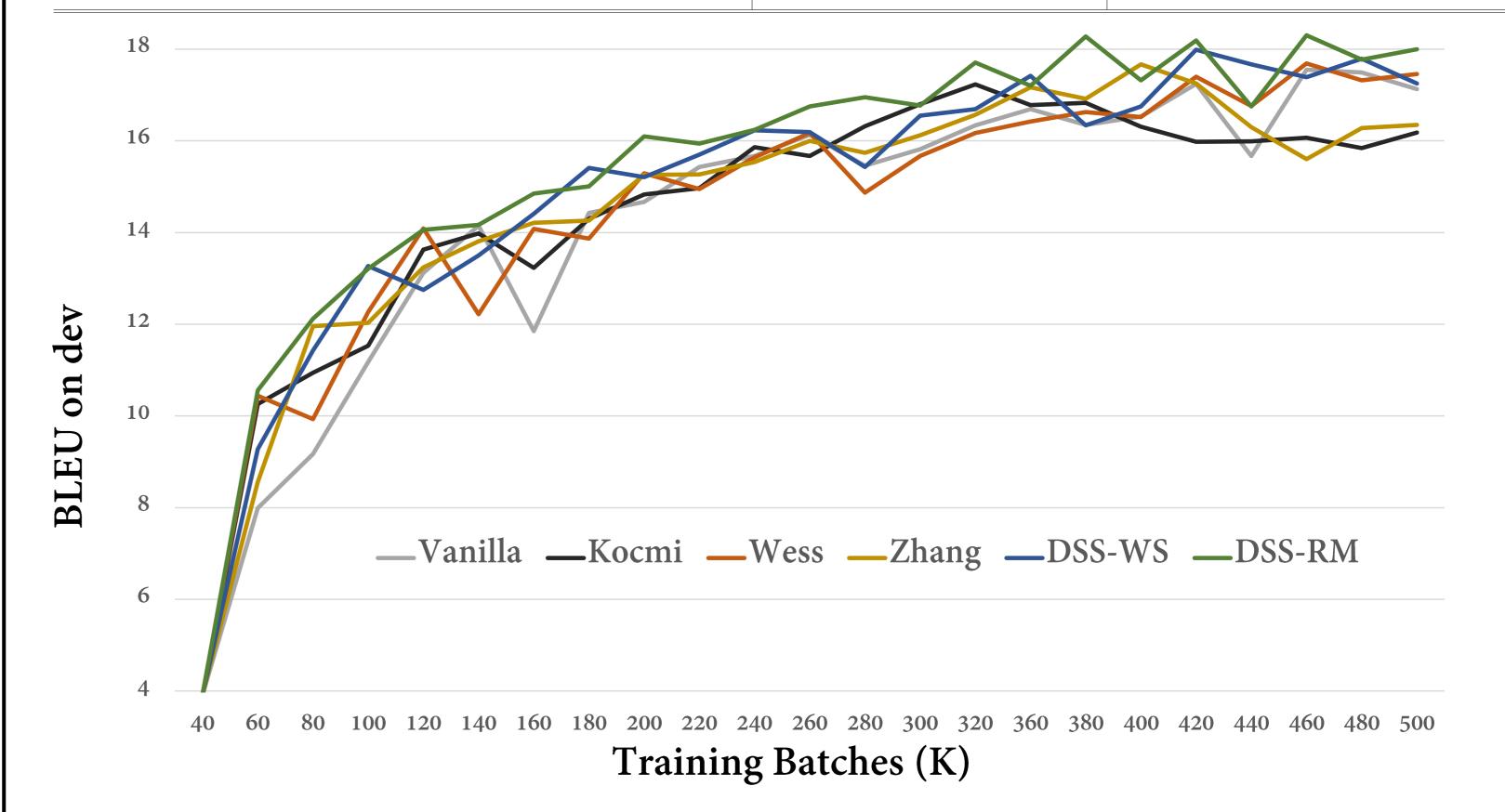
Results and Analyses

We adopted attentional RNN based NMT by Nematus.

ZH-EN (500K batches)	Dev (NIST02)	Test (NIST03-08)
PBSMT	33.15	29.66
Vanilla NMT	38.48	35.08
Random Sampling	38.35	34.62
Kocmi (Curriculum Learning)	38.51	35.19
Wees (Dynamic tuning)	39.16	35.62
Zhang (Boosting)	39.08	35.57
DSS-WS	39.54+	36.85++
DSS-RM	39.89++	37.33++



	EN-DE (500K batches)	Dev (WMT12)	Test (WMT13-15)
-	PBSMT	14.89	16.35
=	Vanilla NMT	17.55	20.06
	Random Sampling	17.39	19.61
	Kocmi (Curriculum Learning)	17.63	20.18
	Wees (Dynamic tuning)	17.69	20.19
	Zhang (Boosting)	17.67	20.30
_	DSS-WS	17.99	20.96+
	DSS-RM	18.34+	21.22++



Discussions

We would like to investigate what would happen if:

- Train on larger/extreme-large corpora.
- Keep training for longer time.
- There is noisy/low-quality data in the corpus.