A Language Model based Evaluator for Sentence Compression

Yang Zhao¹, Zhiyuan Luo¹, Akiko Aizawa²

¹The University of Tokyo, Japan, ²National Institute of Informatics, Japan

Sentence Compression

Task: delete words in the **original sentence** to form short **compression** that remains readable and preserves its underlying meaning.

Original Sentence: *ABCDEFGHIJ*. Compression: *ABCDEFGHIJ*. **Example Sentence:** A man suffered a serious head injury after a morning car crash today.

Example Compression: A man suffered a head injury after a crash. _

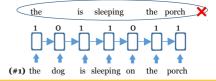
Research Question – How to optimize grammaticality of generated compression ?

(a) Rule-based approaches is too general, sometimes yielding wrong compression.

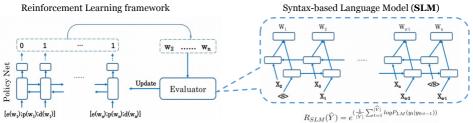
(b) Max-likelihood training objective might not guarantee the readability of the compression.

e.g. Rule - delete prepositional phrase in syntactic tree.

(#1) The dog is sleeping on the porch. √ (#2) At the heart of the problem is a complex physical model proposed by professor Paul.×



Proposed Approach - A Language Model based Evaluator



 $e(w_i)$: word embedding; $p(w_i)$: part-of-speech embedding; $d(w_i)$: dependency label embedding; *Total Reward* = $R_{SLM} + R_{CR}$ where R_{CR} is the compression rate reward. The total reward is used to reinforce the policy network in search of the best compression.

Evaluation and Results

Gigaword Dataset	Annotator 1		Annotator 2						
	F_1	RASP- F_1	F_1	RASP- F_1	CR	Google Dataset	F_1	RASP- F_1	CR
#1 Seq2seq with attention	54.9	60.3	58.6	64.6	0.53	&1 Seq2seq with attention	71.7	63.8	0.34
#2 Dependency tree+ILP	58.0	65.1	61.0	70.9	0.55	&2 LSTM (Filippova, 2015)	82.0	-	0.38
#3 LSTMs+pseudo label	60.3	64.1	64.1	69.2	0.51	&3 LSTMs (our implement)	84.8	81.9	0.40
#4 Evaluator-LM	64.5	67.3	66.9	72.2	0.50	&4 Evaluator-LM	85.0	82.0	0.41
#5 Evaluator-SLM	65.0	69.6	68.2	73.9	0.51	&5 Evaluator-SLM	85.1	82.3	0.39

Table 1: Automatic evaluations (F₁ & RASP-F₁). #1, #2, and #3 are comparison methods while #4 and #5 are proposed methods.

Gigaword	Readability	Informativeness
\$1 LSTMs	3.56	3.10
\$2 SLM	4.16†	3.16

(1) The proposed methods yield better compression upon automatic evaluation (Table 1; F, \$ RASP-F,).

Table 2: Human evaluation for Gigaword dataset. 5-point scale is used.

(2) Compared with Evaluator-LM, Evaluator-SLM brings further improvement, suggesting syntax feature may enable model to learn more unseen but reasonable word collocations. (e.g. noun is usually followed by verb rather than adjective).

(3) Readability of compression is improved by the proposed evaluator upon the human evaluation (Table 2), showing that evaluator-SLM could be used as a post hoc grammar checker.

e 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia. July 15 – July 20, 2018