
Results
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 Evaluation of 

unmixed speech

 Character Error Rate (CER) [%] of mixed speech for WSJ task

 Character Error Rate (CER) [%] of mixed speech for CSJ task

Split by High E. Spk Low E. Spk Avg.

No 86.4 79.5 83.0

VGG 17.4 15.6 16.5

BLSTM 14.6 13.3 14.0

+ KL Loss 14.0 13.3 13.7

Split by High E. Spk Low E. Spk Avg.

No 93.3 92.1 92.7

BLSTM 11.0 18.8 14.9

Task Avg. Char. error rate [%]

WSJ 2.6

CSJ 7.8

Experiments (2/2)
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 Baseline model for single-speaker ASR
 Encoder: 6-layer CNN + 7-layer BLSTM (320 cells)

 Decoder: 1-layer LSTM (320 cells) with location-based attention 
mechanism

 Proposed models for multi-speaker ASR
 2 encoder architectures and (# layers): 

 Joint decoding with RNN-LM

Split by                              

No (baseline) VGG (6) ― BLSTM (7)

VGG VGG (4) VGG (2) BLSTM (7)

BLSTM VGG (6) BLSTM (2) BLSTM (5)

Experiments (1/2)
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 Corpus1:  Wall Street Journal (WSJ)

 Corpus2:  Corpus of Spontaneous Japanese (CSJ)

 Input / Output

 Input:  80 dim. mel-filterbank + pitch feature (+delta, delta delta) 

 Output (WSJ):  49 labels (alphabets and special tokens)

 Output (CSJ): 3,315 labels ( Japanese Kanji/Hiragana/Katakana 
characters and special tokens)

Training Development Evaluation

WSJ (unmixed) 81.5 1.1 0.7

WSJ (mixed) 98.5 1.3 0.8

CSJ (unmixed) 583.8 6.6 5.2

CSJ (mixed) 826.9 9.1 7.5

Mixed: 
mixture of 
2 speakers 

between 0~5 dB

Duration (hours) of unmixed and mixed corpora

Proposed end-to-end 
permutation free training
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Joint CTC/attention architecture
[Hori, et al. 2017]
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 Jointly predict output sequence with CTC,  Attention, and 
RNN-LM
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Multi-speaker speech recognition
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 Generation of multiple transcriptions from a single-
channel mixture of multiple speakers’ speech.

 Permutation Problem

 Correspondence between outputs of an algorithm and 
references is an arbitrary permutation.

 Transcription-level Permutation Free Training

 One-to-many mapping by 
selecting the proper permutation 
of hypotheses and references.

 Loss for S speaker mixtures: 
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Speech 
Recognizer
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End-to-end automatic speech
recognition (ASR)

 Prior to the deep learning revolution, speech processing tasks 
required a variety of different modules and were difficult to 
integrate

 Within speech recognition, end-to-end architectures have 
unified conventional modules into a single neural network 
system with no need for expert knowledge

 Easier to build accurate ASR systems for new tasks
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End-to-end ASR

Conclusions
 Proposed an approach to directly convert an input 

speech mixture into multiple label sequences 
under the end-to-end framework

 Eliminated the necessity to prepare explicit 
intermediate representation, e.g. phonetic 
alignment information or pairwise unmixed 
speech.

 Achieved comparable performance with an end-
to-end system featuring explicit separation and 
recognition modules.
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 Explicit separation and recognition approach 

 End-to-end explicit separation and recognition approach 

Comparison with other approaches
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Method Word Error Rate (%)

Deep clustering + ASR
[Isik 2016]

30.8

This work 28.2

Method Character Error Rate (%)

End-to-end
Deep clustering + ASR

[Settle 2018]
13.2

This work 14.0

Comparable performance to the end-to-end explicit separation and recognition 
network, without having to pre-train using clean signal training references.

Promoting separation of hidden vectors
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 Generation of multiple label sequences based on 
single decoder network

 Frame-wise negative KL loss
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Encouragement of hidden vectors to 
avoid generating similar hypotheses.

Reduction of permutation cost
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 Synchronous output

 Decision of best permutation based on the CTC loss 
alone.

         
   

              
      

 

        
   

              
         

 

   

        
   

              
       

        

 

   

* Permutation based on CTC was 16.3 times faster 
than that based on the decoder network
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 Preparation of explicit intermediate representation for 
efficient training.

1. Explicit separation and recognition approach 
× Pairwise unmixed speech for signal-level permutation 

free training

2. (Non end-to-end) Implicit separation approach [Qian 2017]

× Phonetic alignment information for transcription-level 
permutation free training
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Problem of conventional approach

DEEP 

SEPARATION

NETWORK
DEEP 

NETWORK

Decoding

Separation Recognition ``great’’

``okay’’

[Settle 2018] Joint optimization of separation and recognition modules based on ASR loss under end-to-end framework 

This work:    End-to-end architecture without requiring

explicit separation module and intermediate representation 

[Isik 2016, Settle 2018] 


