SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment

Jisun An¹, Haewoon Kwak¹, Yong-Yeol Ahn²

¹Qatar Computing Research Institute, Hamad Bin Khalifa University ²Indiana University, Bloomington

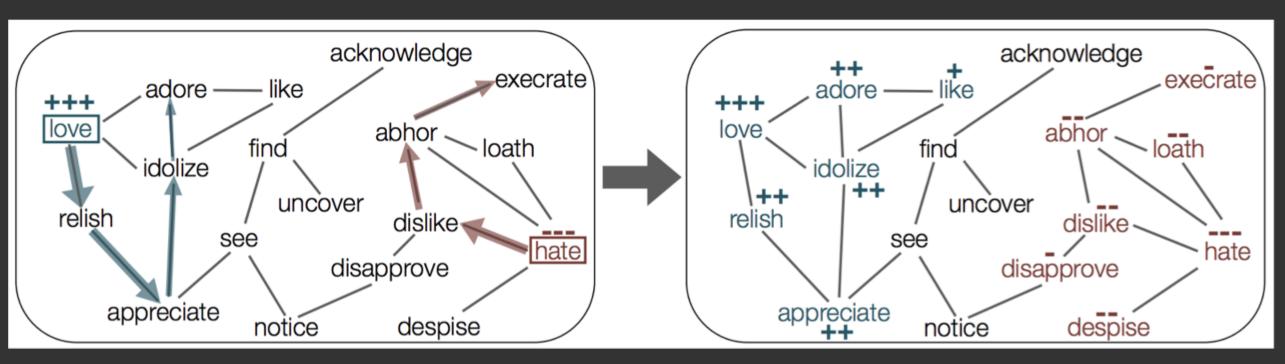
Q Meaning of words can change?

Yes. Context can strongly alter the meaning of words. Fischer, 1958; Eckert and McConnell-Ginet, 2013; Hovy, 2015; Hamilton et al., 2016b

Kill in video games vs. news Soft in sports vs. toys

Domain-specific sentiment lexicons

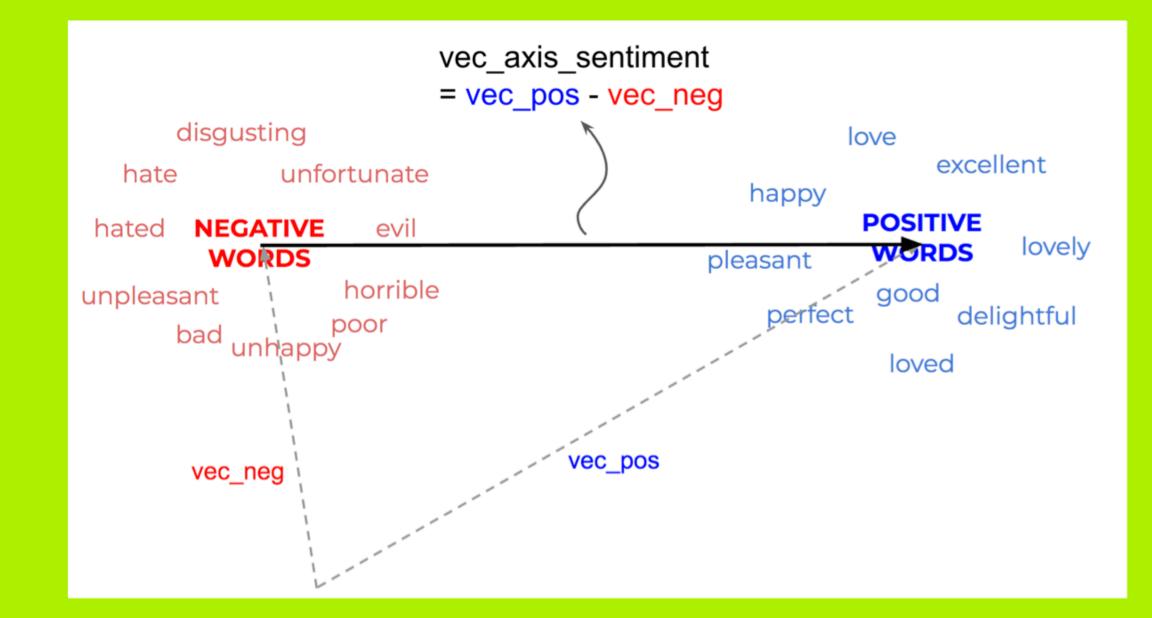
Hamilton et al., 2016a

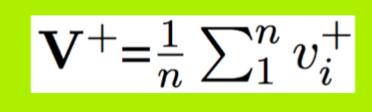


Is it possible to generalize this idea to general word semantics other than sentiment?

Basics of our framework, SemAxis

- Building a word embedding of a given corpus
- 2. Defining a semantic axis and computing its vector

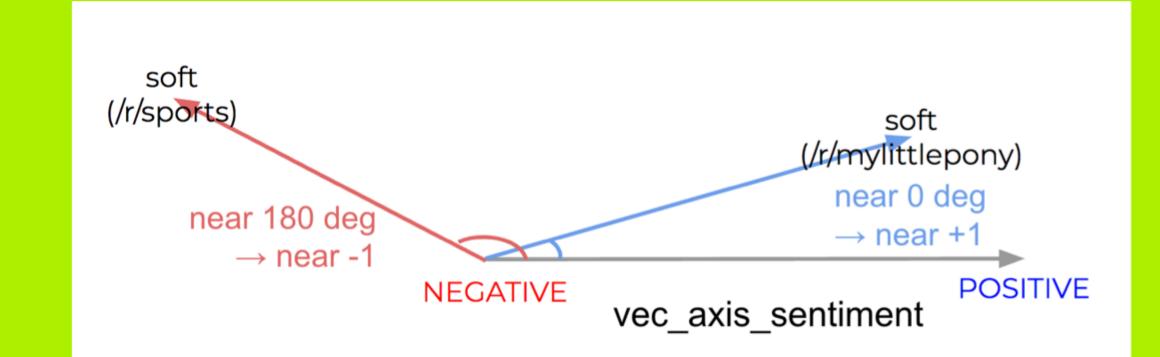


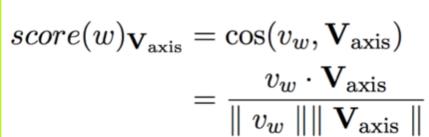


$$\mathbf{V}^- = \frac{1}{m} \sum_1^m v_j^-$$

$$\mathbf{V}_{\mathrm{axis}} = \mathbf{V}^+ - \mathbf{V}^-$$

Projecting word onto a semantic axis





Our key contributions

- 1. We propose a **general framework** to characterize the domain-specific word semantics.
- 2. We systematically identify 732 semantic axes based on the antonym pairs in ConceptNet.
- 3. We demonstrate that SemAxis can capture semantic differences between two corpora.
- 4. We provide a systematic evaluation comparison to the state-of-the-art, domain-specific sentiment lexicon construction methodologies.

Evaluation

SemAxis outperforms others on both Standard English and Twitter datasets across all measures.

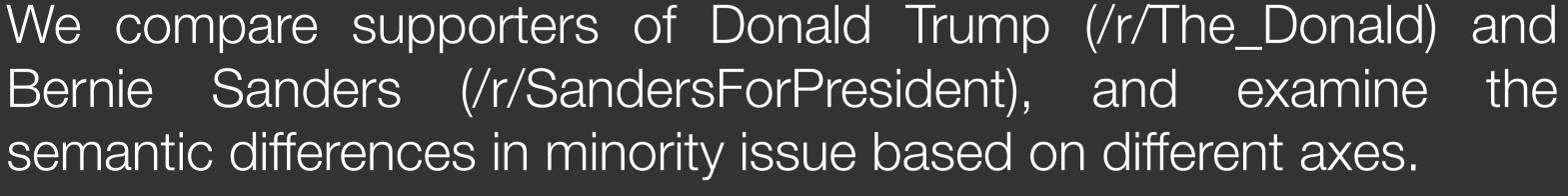
Domain P	Positive pole words	Negative pole words	
for light lo Twitter lo av in	good, lovely, excellent, ortunate, pleasant, de- ightful, perfect, loved, ove, happy ove, loved, loves, wesome, nice, amazing, best, fantastic, orrect, happy	bad, horrible, poor, unfortunate, unpleasant, disgusting, evil, hated, hate, unhappy hate, hated, hates, terrible, nasty, awful, worst, horrible, wrong, sad	

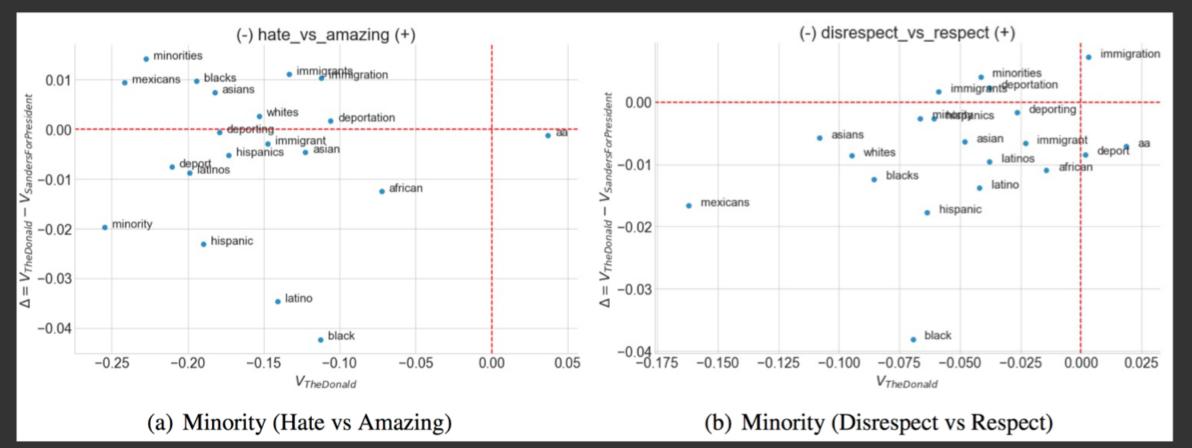
Standard English					
Method	AUC	Ternary F1	Tau		
SEMAXIS	92.2	61.0	0.48		
DENSIFIER	91.0	58.2	0.46		
SENTPROP	88.4	56.1	0.41		
WordNet	89.5	58.7	0.34		
Twitter					
Method	AUC	Ternary F1	Tau		
SEMAXIS	90.0	59.2	0.57		
DENSIFIER	88.5	58.8	0.55		
SENTPROP	85.0	58.2	0.50		
Sentiment140	86.2	57.7	0.51		

T Identifying 732 semantic axes

- 1. We begin with a pair of antonyms, called initial pole words. To build a comprehensive set of initial pole words, we compile a list of antonyms from ConceptNet 5.5 (Speer et al., 2017).
- 2. To further refine the antonym pairs, we create a crowdsourcing task by asking Do these two words have opposite meanings?

SemAxis in the wild





	Category	Reddit20M	Google300D
immigration	World	28.34	70.2
	family	94.58	90.06
	Gram1-9	70.21	73.40
deport aa	Total	67.88	77.08
0.025	0.10 0.08 0.06 0.04 0.02 0.00 0.00		70 65 60 60 55
	-0.02 2 10	20 30	40 50 50

Challenges

- 1. Small-sized corpus: Pre-train a word embedding using a background corpus and update this reference model with the target corpora.
- 2. Sensitivity to seed words: Use \ell closest words on the vector space as well as the two initial pole words.

SemAxis can find, for a given word, a set of the best semantic axes.

We map the target word on our predefined 732 axes and rank the axes based on the projection values on the axes.

