

Department of Computing, KAIST¹, Program in Cognitive Science, Seoul National University², Natural Language Processing team, Adecco³ {sungjoon.park, jmbyun}@kaist.ac.kr, sioning1122@snu.ac.kr, yongseok.cho84@gmail.com, alice.oh@kaist.edu

Introduction

Background

- Research on distributed word representations is focused on widely-used languages such as English. Although the same methods can be used for other languages, language-specific knowledge can enhance the accuracy and richness of word vector representations.
- Despite their effectiveness in capturing syntactic features from subword features of diverse languages, decomposing a word into a set of n-grams and learning n-gram vectors does not consider the unique linguistic structures of various languages.

Contribution

- Our first contribution is the method to decompose the words into both character-level units and *jamo*-level units and train the subword vectors through the Skip-Gram model.
- Our second major contribution is the Korean evaluation datasets for word similarity and analogy tasks, a translation of the WS-353 with annotations by 14 Korean native speakers, and 10,000 items for semantic and syntactic analogies, developed with Korean linguistic expertise.
- Using these datasets, we show that our model improves performance over other baseline methods without relying on external resources for word decomposition.

Experiments

Dataset

	# of	# of	# of unique	 We aggregate
	words	sentences	words	sources to ma
Wikipedia	43.4M	3.3M	299,528	corpus contai
Online News	47.1M	3.2M	282,955	tokopo with 0
Sejong Corpus	31.4M	2.2M	231,332	unique words
Total	121.9M	8.8M	638,708	

• Our model and all of the comparison models for training word vectors are trained over the collected corpus.

Evaluation Tasks

1) Word Similarity & Analogy

- We develop the evaluation datasets.
- Similarity: Spearman's correlation coefficient between the human judgment and model's cosine similarity for the similarity of word pairs are reported.
- Analogy: Rank-based measures may not be an appropriate measure since the total number of unique n-grams/words over the same corpus largely differ from each other. For fair comparison, cosine distances between the vector a+b-c and d of each categories are reported.

2) Sentiment Analysis

- Given a sequence of words, a trained classifier should predict the binary sentiment from the inputs while maintaining the input word vectors fixed.
- Based on part of the Naver Sentiment Corpus, single layer RNN is trained as a classifier for the task.

Subword-level Word Vector Representations for Korean

Sungjoon Park¹, Jeongmin Byun¹, Sion Baek², Yongseok Cho³, Alice Oh¹

Subword-level Word Vectors for Korean

Decomposition of Korean Words

- Decompose a word to *jamo* sequence Jamos have names that reflect the position in a character: 1) chosung (syllable onset), 2) joongsung (syllable nucleus), 3) jongsung (syllable coda)
- Add empty jongsung symbol e such that a character always has 3 (jamos)
- Add start/end symbol < / > in the sequence

먹었다 $(ate) \rightarrow \langle, \Box, \uparrow, \neg, \circ, \uparrow, \mathcal{M}, \Box, \uparrow, e, \rangle$

Extracting n-grams for jamo sequence

- Character-level n-grams, Gct $(\Box, \neg, \neg), (\circ, \neg, \varkappa), (\Box, \neg, e), (\circ, \neg, \varkappa, \Box, \neg, e)$ • Inter-character jamo-level n-grams, $Gjt (<, \Box, \dashv), (\neg, \circ, \dashv), (\mathcal{M}, \Box, \vdash), (\downarrow, e, >) \dots$

Subword Information Skip-Gram (SISG, a.k.a FastText)

- Constructing word vector from subword vectors : $z_t = \frac{1}{|G_{ct} + G_{jt}|} (\sum_{g_{ct} \in G_{ct}}^{|G_{ct}|} z_{g_{ct}} + \sum_{g_{it} \in G_{it}}^{|G_{jt}|} z_{g_{jt}})$
- SISG Binary Logistic Loss : $\ell = \log(1 + e^{-s(w_t, w_{t+j})}) + \sum_{n=1}^{n_c} \log(1 + e^{s(w_t, w_{t+j})})$
- Scoring Function: $s(w_t, w_{t+j}) = \frac{1}{|G_{ct} + G_{jt}|} (\sum_{q \in G_{ct}}^{|G_{ct}|} z_{g_{ct}}^T v_{t+j} + \sum_{q \in G_{it}}^{|G_{jt}|} z_{g_{jt}}^T v_{t+j})$

Developing Evaluations Sets

Word Similarity (WS-353) for Korean

- 2 native speakers translated the original item pairs.
- 14 other native speakers annotated similarity scores of the pairs.
- Correlation between the original scores and the annotated scores of the translated pairs is 0.82.

Word Analogy for Korean

- Semantic Features (5,000 items)
- *Male-Female* :
- Name-Nationality : 간디Gandhi : 인도India = 링컨Lincoln : 미국USA
- Miscellaneous :
- Syntactic Features (5,000 items)
- 교수Professor: 교수가Professor+case가 = 축구soccer: 축구가soccer+case가 \circ Case : 싸우다fight : 싸웠다fought = 오다come : 왔다came • Tense : • Voice : 팔았다sold : 팔렸다be sold = 평가했다evaluated : 평가됐다was evaluated ○ Verb : 가다go : 가고go+form고 = 쓰다write : 쓰고write+form고
- Honorific :도왔다helped : 도우셨다helped+honorific시 = 됐다done : 되셨다done+honorific시

* Publicly available at : https://github.com/SungjoonPark/KoreanWordVectors

e three ake the ining /ord .6 million

○ Capital-Country: 아테네Athens: 그리스Greece = 바그다드Baghdad: 이라크Iraq 왕자prince:공주princess = 신사gentlemen:숙녀ladies ○ Country-Language : 아르헨티나Argentina : 스페인어Spanish = 미국USA : 영어English 개구리Frog: 올챙이tadpole = 말horse: 망아지pony

Results

Word Similarity

Word Analogy

	Semantic					Syntactic				
	Capt	Gend	Name	Lang	Misc	Case	Tense	Voice	Form	Honr
SG	0.460	0.551	0.537	0.435	0.574	0.521	0.597	0.594	0.685	0.634
SISG(ch)	0.469	0.584	0.608	0.439	0.614	0.422	0.559	0.550	0.656	0.489
SISG(jm)	0.442	0.515	0.574	0.362	0.565	0.228	0.421	0.434	0.537	0.367
SISG(ch4+jm)	0.431	0.504	0.570	0.361	0.556	0.212	0.415	0.434	0.501	0.364
SISG(ch6+jm)	0.425	0.498	0.561	0.354	0.554	0.210	0.414	0.426	0.507	0.367

• Overall, decomposing words help to capture semantic/syntactic features.

Sentiment Analysis

	Acc.(%)	Prec.	Rec.	F1	 Decomposing a word
SG	76.15	0.746	0.792	0.768	character n-grams and
SISG(ch)	76.26	0.774	0.741	0.757	jamo n-grams show s
SISG(jm)	76.53	0.790	0.722	0.754	higher performance or
SISG(ch4+jm)	76.28	0.755	0.776	0.765	comparable models.
SISG(ch6+jm)	76.54	0.750	0.795	0.772	

Effect of n in n-grams

		# of chars				
		4	5	6	all	
# of <i>jamos</i>	2-4	0.660	0.655	0.659	0.651	
	3-4	0.660	0.650	0.652	0.660	
	3-5	0.677	0.672	0.677	0.675	
	3-6	0.665	0.663	0.664	0.669	

Conclusion and Discussion

- analogy tasks.
- tagging and parsing.

Acknowledgement

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-01778, Development of Explainable Human-level Deep Machine Learning Inference Framework).

- Decomposing words into jamo-level is helpful to learn good Korean word vectors.
- Spearman correlation with human evaluation is improved to 0.677. (1-4 characters n-grams / 3-5 jamo n-grams included)

• *n* of jamo-level *n*-grams, including n=5,6 of *n*-grams and excluding bigrams show higher performance. Including all of the character *n*-grams while decomposing a word does not guarantee performance improvement.

• We demonstrated the effectiveness of the jamo- and character-level Korean word vectors in capturing the semantic and syntactic information by evaluating these vectors with newly developed word similarity and word

• We plan to apply these vectors for various neural network based NLP models, and apply the same idea to other syntactic tasks such as POS