

Building Language Models for Text with Named Entities Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang https://github.com/uclanlp/NamedEntityLanguageModel

Abstract

- Language models often cannot predict entity names in text well due to their diverse vocabularies.
- We propose a language model for texts with entity names by leveraging the deterministic entity types.
- **Type Model:** predicts the type of the entity name
- Entity Composite Model: generates the conditional actual entity name given the entity type as prior
- We conduct experiments on two applications:
- Recipe generation and Code generation

Motivation

- Generating entity names in text is very challenging (e.g., *olive oil, canola oil, grape oil,* etc.—all are different varieties of *oil)*.
- Existing language models:
- fail to address this problem.
- focus on copying/matching the entity names from the reference corpus^{1,2}.
- Given the context \overline{w} , type of the context $s(\overline{w})$, our goal is to model the • are based on generative models of low performance. probability of the next word w, $P(w \mid \overline{w}; \theta_t, \theta_v) \approx P(w, s(w) \mid \overline{w}, s(\overline{w}); \theta_t, \theta_v)$ θ_{v}). As a word can be either a named entity or not, we model it by the following two cases:

Methodology

Our model learns the probability distribution over the candidate words by decomposing it into two subproblems:

***** Type Model (θ_t) :

- considers all of entities with the same type equal and represent them by their type information.
- reduces the vocab size to a great extent.
- predicts the type *s(w)* of each entity (*w*) more accurately.

***** Entity Composite Model (θ_v) :

- uses the entity type generated by the *type model* as a prior.
- calculates the conditional probability distribution of the actual entity names.

Figure 1. An illustration of our model Given a context, the **type** model (in bottom red block) generates the type of the words. Further, for that given context & type of each candidate generated by the type model, the entity composite model (in upper green block) generates the conditional actual entity names.

$$P(w \mid \overline{w}, s(w), s(\overline{w}); \theta_v) \times \begin{cases} P(s(w) \mid s(\overline{w}); \theta_t) \\ 1 - \sum_{s \in S} P(s(w) = s \mid s) \end{cases}$$

where **S** is set of all entity types.

 \bullet We train θ_t , and θ_v independently by any state-of-art language model. ✤ We do a joint inference according to Equ-1.

Experimental Results

We create two benchmark datasets that contain many named entities. **Recipe Generation Corpus:**

- 95,786 cooking recipes⁴
- Manually categorized 8 super-ingredients (i.e., types); e.g., proteins, vegetables, fruits etc.

if **w** is an entity name otherwise $s(\overline{w}); \theta_t$

(1)

• Recipe generation performance:

Model	corpus	Vocab	Perplexity
AWD_LSTM (state-of-art language model)	original	52,742	20.23
AWD_LSTM	type	51, 675	17.62
AWD_LSTM (entity type as an additional input)	original	52,742	18.23
Our model	original	52,742	9.67

ingredient name:

Entity	Training	#Blanks	Free-form AWD_LSTM ours		MCQ	
name	frequency				AWD_LSTM ours	
Milk	14,136	4001	26.94	59.34	80.83	94.90
Salt	33,306	9,888	37.12	62.47	89.29	95.75
Apple	7,205	720	1.94	30.28	37.65	89.86
Bread	11,673	3,074	32.43	52.64	78.85	94.53
Tomato	19,875	6,072	22.50	45.24	77.70	94.63

Code Generation Corpus:

- Abstract Syntax Tree (AST) based entity type
- 22.06% better in perplexity with respect to state-of-art code generation baseline SLP-Core³

References

- learning." *arXiv preprint arXiv:1603.06393* (2016).
- 3.
- Collected from http://www.ffts.com/recipes.htm.

Acknowledgement

This work was supported in part by National Science Foundation Grants IIS1760523, CCF-16-19123, CNS-16-18771 and an NVIDIA hardware grant.

Accuracy improvement while predicting the exact

• Free-form (i.e., without any option) • From a set of options (MCQ)

• 500 open source Android projects collected from GitHub

1. Gu, Jiatao, et al. "Incorporating copying mechanism in sequence-to-sequence 2. Wiseman, Sam, Stuart M. Shieber, and Alexander M. Rush. "Challenges in data-to-document generation." *arXiv preprint arXiv:1707.08052* (2017). Hellendoorn, Vincent J., and Premkumar Devanbu. "Are deep neural networks the best choice for modeling source code?." *Proceedings of the 2017 11th* Joint Meeting on Foundations of Software Engineering. ACM, 2017.