Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning

Baolin Peng[#], Xiujun Li^{*}, Jianfeng Gao^{*}, Jingjing Liu^{*}, Kam-Fai Wong[#], Shang-Yu Su^{\$}

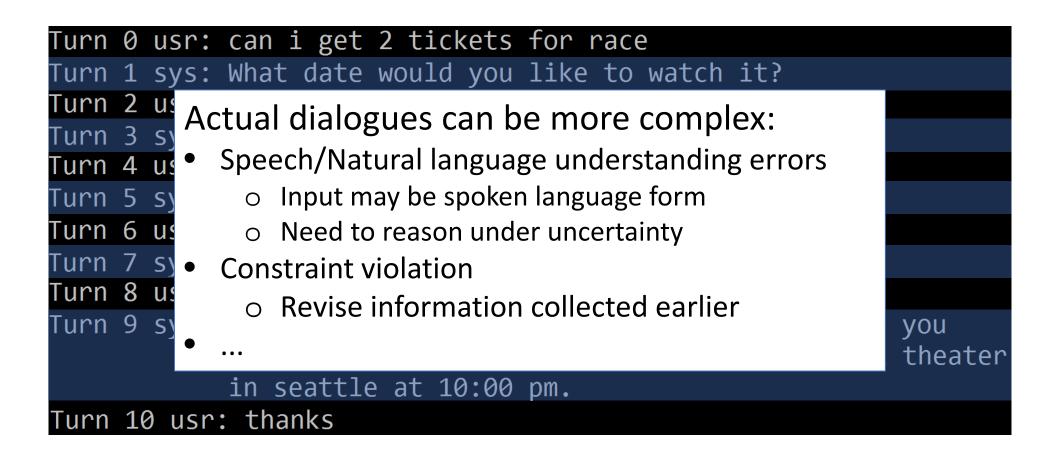
*Microsoft Research #The Chinese University of Hong Kong ^{\$}National Taiwan University

ACL 2018

Outline

- Task-completion dialogue as optimal decision making
- Reinforcement learning using real or simulated experience
- Deep Dyna-Q
- Evaluation methodology
- Simulated user evaluation
- Human-in-the-loop evaluation
- Conclusion

An Example Dialogue with Movie-Bot



Task-oriented, slot-filling, Dialogues

- Domain: movie, restaurant, flight, ...
- **Slot**: information to be filled in before completing a task • For Movie-Bot: movie-name, theater, number-of-tickets, price, ...
- Intent (dialogue act):

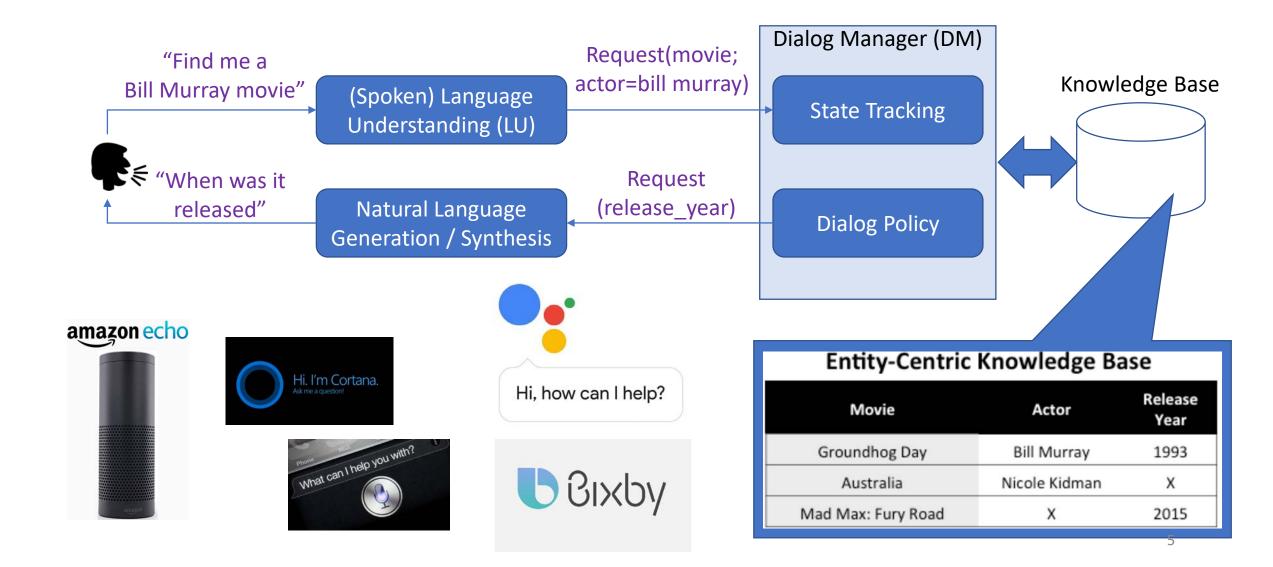
 Inspired by speech act theory (communication as action) request, confirm, inform, thank-you, ...

o Some may take parameters:

thank-you(), request(price), inform(price=\$10)

"Is Kungfu Panda the movie you are looking for?"

A Multi-turn Task-oriented Dialogue Architecture

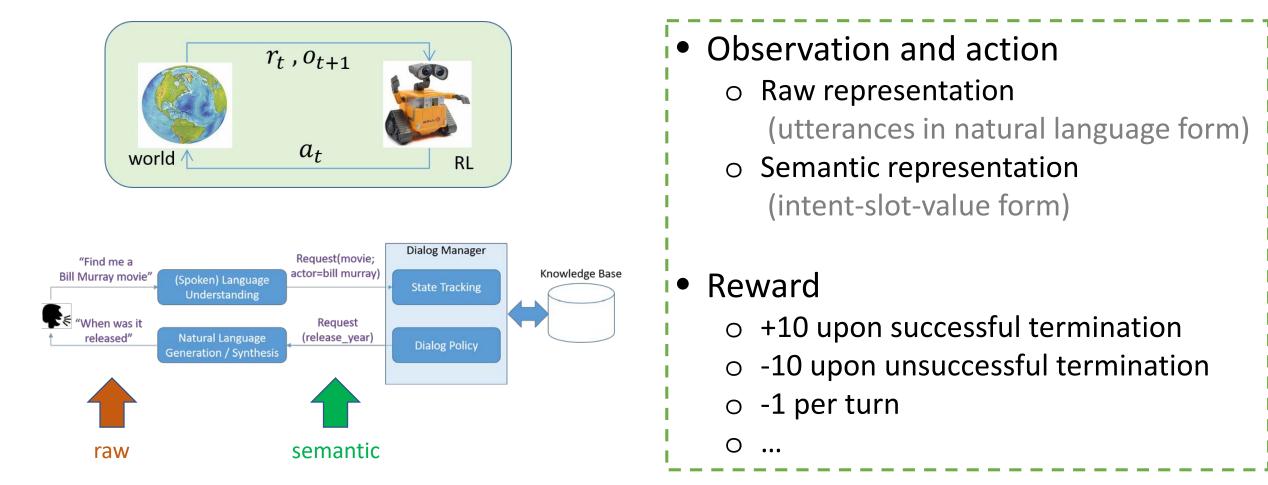


A unified view: dialogue as optimal decision making

- Dialogue as a Markov Decision Process (MDP)
 - Given state s, select action a according to (hierarchical) policy π
 - Receive reward r, observe new state a'
 - Continue the cycle until the episode terminates.
- Goal of dialogue learning: find optimal π to maximize expected rewards

Dialogue	State (s)	Action (a)	Reward (r)
Info Bots (Q&A bot over KB, Web etc.)	Understanding of user Intent (belief state)	Clarification questions, Answers	Relevance of answer # of turns
Task Completion Bots (Movies, Restaurants,)	Understanding of user goal (belief state)	Dialog act + slot_value	Task success rate # of turns
Social Bot (Xiaolce)	Conversation history	Response	Engagement

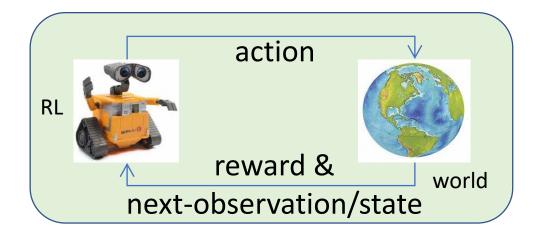
Task-completion dialogue as RL

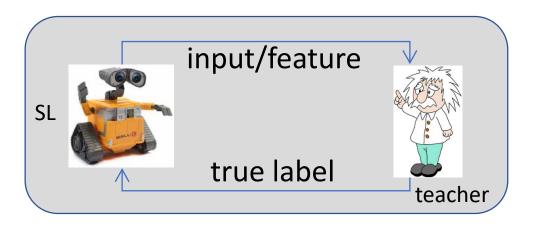


Pioneered by [Levin+ 00]

Other early examples: [Singh+ 02; Pietquin+ 04; Williams&Young 07; etc.]

RL vs. SL (supervised learning)





Differences from supervised learning

- Learn by trial-and-error ("experimenting")
 Need efficient exploration
- Optimize long-term reward (r₁ + γr₂ + ···)
 ➢ Need temporal credit assignment

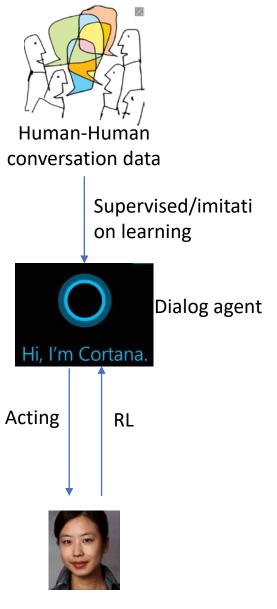
Similarities to supervised learning

- Generalization and representation
- Hierarchical problem solving

>...

Learning w/ real users

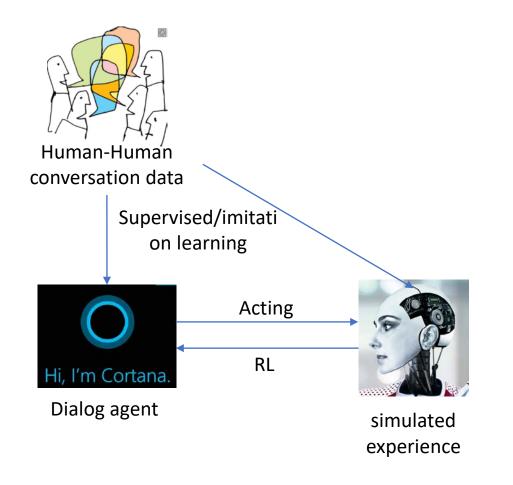
- Expensive: need large amounts of real experience except for very simple tasks
- Risky: bad experiences (during exploration) drive users away



real experience

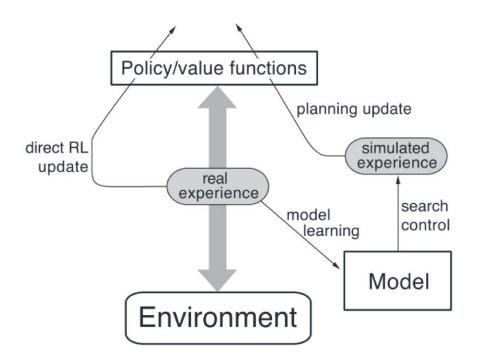
Learning w/ user simulators

- Inexpensive: generate large amounts of simulated experience for free
- Overfitting: discrepancy btw real users and simulators



Dyna-Q: integrating planning and learning [Sutton+90]

- combining model-free and model-based RL
- tabular methods and linear function approximation
- direct reinforcement learning
- (world) model learning
- planning/search control



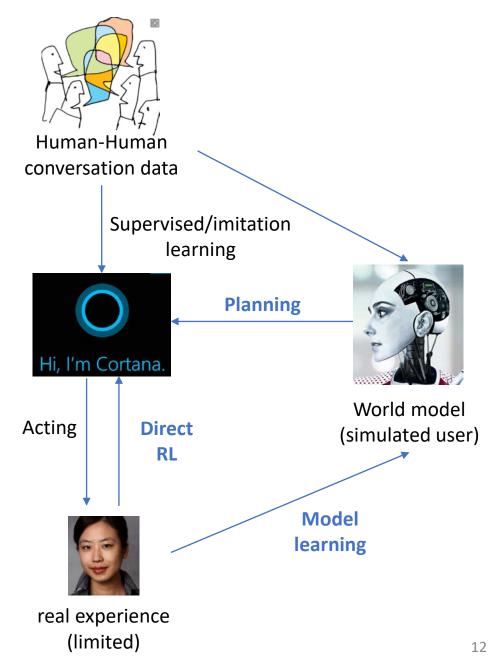
Deep Dyna-Q (DDQ): Integrating Planning for Dialogue Policy Learning

DDQ

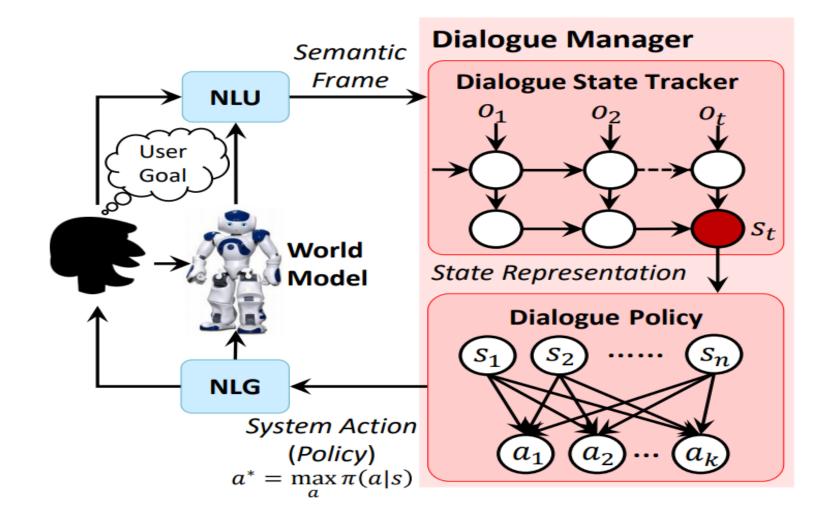
- Based on Dyna-Q
- Policy as DNN, trained using DQN
- Apply to dialogue: simulated user as world model

Dialogued agent trained using

- Limited real user experience
- Large amounts of simulated experience
- Limited real experience is used to improve
- Dialog agent
- World model (simulated user)

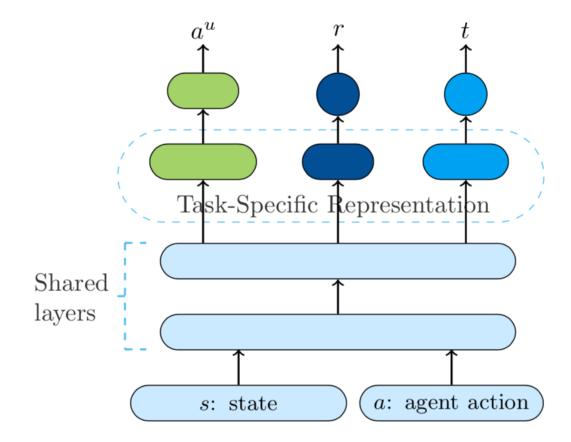


Task-completion DDQ dialogue agent



The world model architecture

- Multi task MLP
 - Reward *r*
 - User action a^u
 - Termination *t*

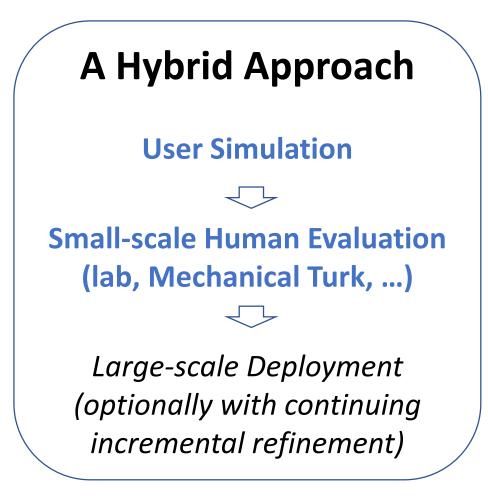


Dialogue System Evaluation

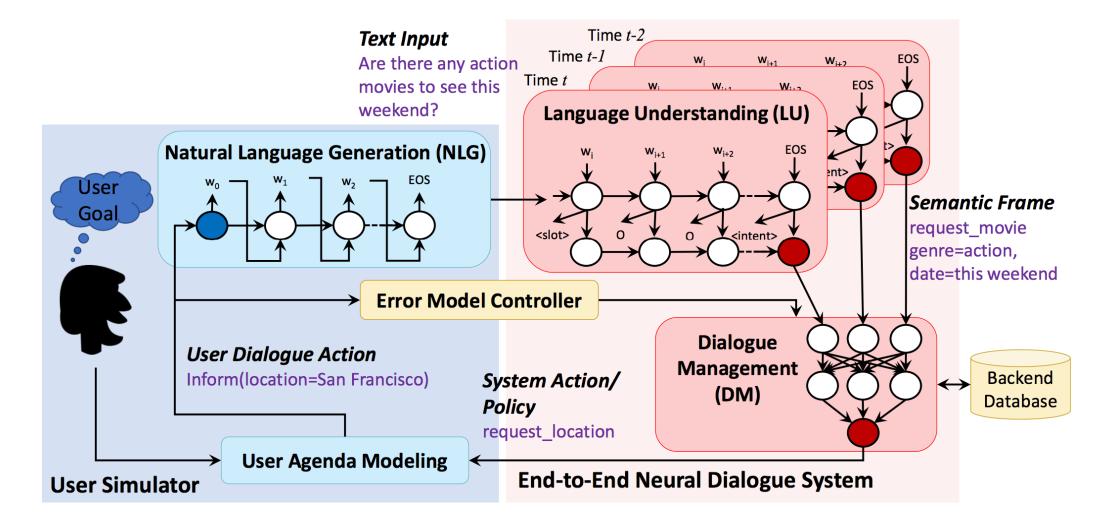
- Metrics: what numbers matter?
 - Success rate: #Successful_Dialogues / #All_Dialogues
 - Average turns: average number of turns in a dialogue
 - o User satisfaction
 - Consistency, diversity, engaging, ...
 - Latency, backend retrieval cost, ...
- Methodology: how to measure those numbers?

Evaluation methodology

	Lab user subjects	Actual users	Simulated users
Truthfulness		\checkmark	X
Scalability	X	\checkmark	\checkmark
Flexibility	X		\checkmark
Expense	X		\checkmark
Risk	\checkmark	X	\checkmark

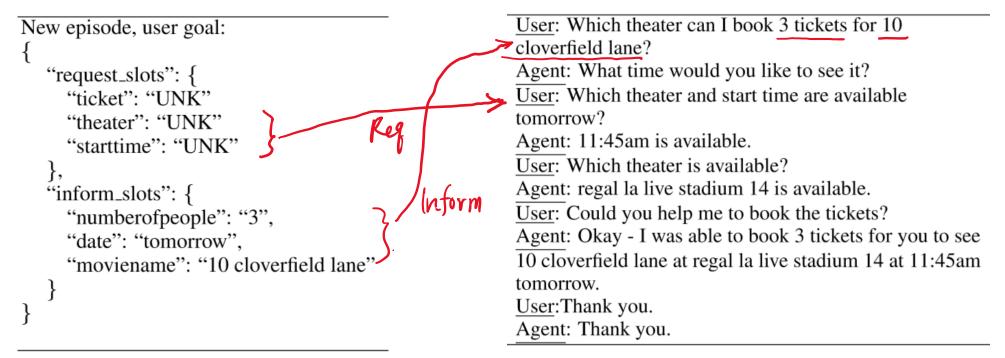


A Simulator for E2E Neural Dialogue System [Li+ 17]



Agenda-based Simulated User [Schatzmann & Young 09]

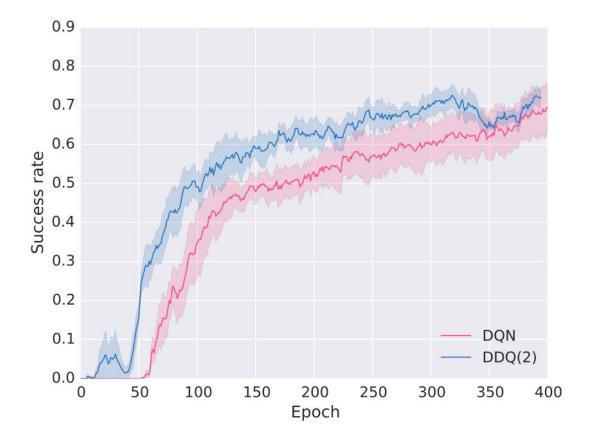
- User state consists of (agenda, goal); goal is fixed throughout dialogue
- Agenda is maintained (stochastically) by a first-in-last-out stack



Simulated user evaluation

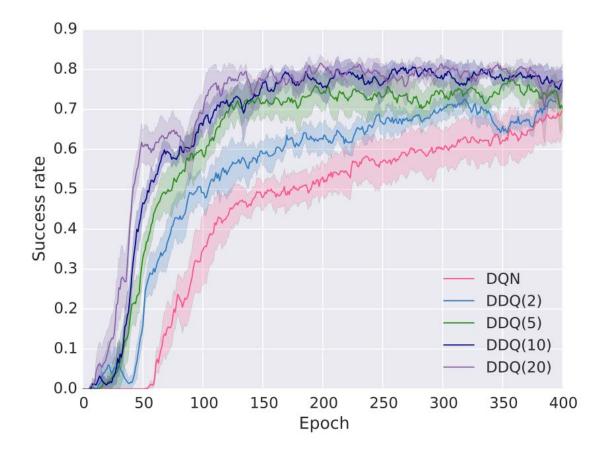
- DQN vs DDQ (K)
 - K: number of planning steps (generating K simulated dialogues per real dialogue)

-
$$K = 2$$



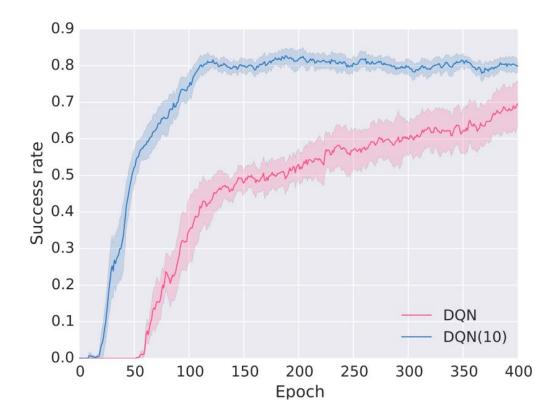
Simulated user evaluation

- DQN vs DDQ (K)
 - K: number of planning steps (generating K simulated dialogues per real dialogue)
 - *K* = 2, 5, 10, 20



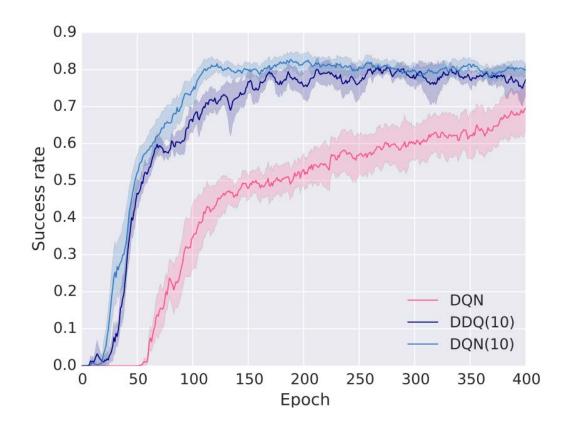
Impact of world model quality

- DQN(10):
 - perfect world model



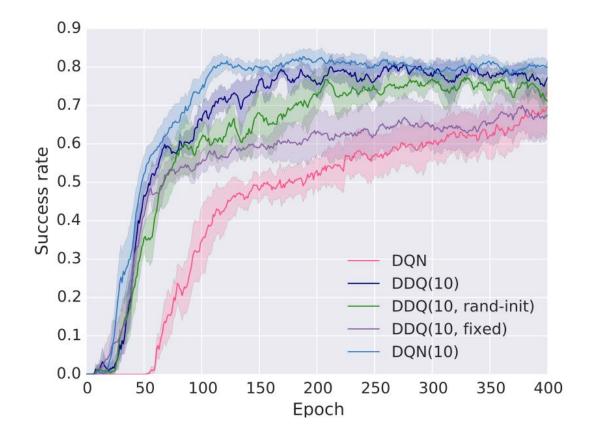
Impact of world model quality

- DQN(10)
 - perfect world model
- DDQ(10):
 - pretrained on labeled data, and updated using real dialogue on the fly



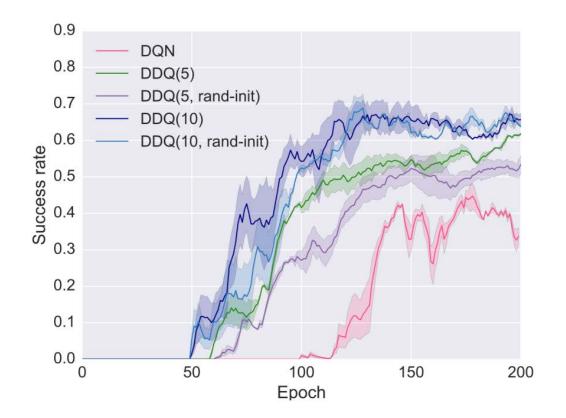
Impact of world model quality

- DQN(10)
 - perfect world model
- DDQ(10):
 - pretrained on labeled data, and updated using real dialogue on the fly
- DDQ(10, rand-init):
 - pretrained on labeled data, and updated using real dialogue on the fly
- DDQ(10, fixed):
 - pretrained on labeled data, and updated using real dialogue on the fly



Human-in-the-loop experiments

- learning dialogue via interacting with real users
- DDQ agents significantly outperforms the DQN agent
- A larger *K* leads to more aggressive planning and better results
- Pre-training world model with human conversational data improves the learning efficiency and the agent's performance



Conclusion and Future Work

- Deep Dyna-Q: integrating planning for dialogue policy learning
 - Improves learning efficiency
 - Make the best use of limited real user experiences
- Future research
 - Learning when to switch between real and simulated users
 - Exploration in planning
 - Exploration: trying actions to improve the world model
 - Exploitation: trying to behave in the optimal way given the current world model

Microsoft Dialogue Challenge at SLT-2018

- 07/16/2018: <u>Registration</u> is now open.
- Task: build E2E task-completion dialogue systems
- Data: labeled human conversations in 3 domains
- Experiment platform with built-in user simulators for training and evaluation
- Final evaluation in simulated setting and by human judges
- More information:

https://github.com/xiul-msr/e2e_dialog_challenge