A Distributional and Orthographic
Aggregation Model for English
Derivational Morphology

Daniel Deutsch,* John Hewitt,* and Dan Roth

N Penn
!‘, Engl'neering

*equal contribution



Co-Authors

Qu @Penn Engineering

John Hewitt
Co-First Author

Dan Roth

Advisor



Derivational Morphology
aceNL_— employer
employ <
Resu;— employment
povER_—~ intensely
intense <
Nomnz~ intensity

@4 &Penn Engineering



Derivational Morphology
aceNL_— employer
employ <
Resu;— employment
povER_—~ intensely
intense <
Nomnz~ intensity

TRANSFORMATION .
root word » derived word

Qu %%‘ Penn Engineering




Derivational Morphology
AcE
employ <
Resugy
AOVERS
intense <
NOMINAL

TRANSFORMATION
root word >

@4 &Penn Engineering




Motivation

* Machine translation
e Text simplification
* Language generation
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Challenges

e Suffix ambiguity
* Orthographic irregularity
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Suffix Ambiguity

“l have an observament!”
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Suffix Ambiguity

“I have an observament!”
grounding
*groundation
ground
*groundment

*groundal
RESULT
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Suffix Ambiguity
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grounding
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Orthographic Irregularity

RESULT
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Orthographic Irregularity
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Orthographic Irregularity
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Orthographic Irregularity
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speak > speech

RESULT

creak > tereeeh creaking

du %if’ Penn Eng]'neering

14



Orthographic Irregularity
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Orthographic Irregularity
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Orthographic Irregularity
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Orthographic Irregularity
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Model Overview
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Model Overview
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Orthographic Model

* Seq2Seq baseline
e Dictionary-constrained decoding
* Reranking with frequency information

@ F%Penn Engineering

25



Seq2Seq Baseline

RESULT —
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Seq2Seq Baseline
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Seq2Seq Baseline
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Seq2Seq Baseline
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Dictionary-Constrained Decoding

* Seq2Seq models generate Suffix Ambiguity
many unattested words, but |
are reasonable guesses grounding
*groundation
ground
*sroundment
*sroundal
RESULT
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Dictionary-Constrained Decoding

* Seq2Seq models generate Suffix Ambiguity
many unattested words, but
are reasonable guesses grounding
* Intuition: constrain model . *sroundation
groun
to only generate known *sroundment
words
*sroundal
RESULT
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Dictionary-Constrained Decoding
2 ={a,b,#}
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Dictionary-Constrained Decoding

2 ={a,b,#}
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Dictionary-Constrained Decoding
2 ={a,b,#}
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Dictionary-Constrained Decoding
2 ={a,b,#}
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Dictionary-Constrained Decoding

S = {a, b, #}
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Dictionary-Constrained Decoding
2 ={a,b,#}

—log py(b | ab)
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Dictionary-Constrained Decoding
2 ={a,b,#}

—log py(abb)
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Dictionary-Constrained Decoding

2 ={a,b,#}
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Dictionary-Constrained Decoding

2 ={a,b,#}
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Dictionary-Constrained Decoding

> =1{a,b,#}
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Reranking with Frequency Information

refute _RESVLT
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Reranking with Frequency Information

refute _RESVLT

Model Output Model Score

refution -1.1
refutation -1.2
refut -4.8
refuty -5.6
refutat -8.7
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Reranking with Frequency Information

refute _RESVLT

Model Output Model Score

refution -1.1
refutation -1.2
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Reranking with Frequency Information

refute _RESULT |
Log C
Model Output Model Score & _~° P
Freq
refution -1.1 50
refutation -1.2 14.3
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Reranking with Frequency Information

refute _RESVLT

Log Corpus Reranker Reranker
Freq Output Score

refution -1.1 5.0 refutation 0.5
refutation -1.2 I4.3>< refution -0.9

Model Output Model Score
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Model Overview
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Distributional Model

* Orthographic information
can be unreliable

e Semantic transformation
remains the same
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Distributional Model

Intuition

cats — cat + ox ~ oxen’
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Distributional Model

Intuition
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Distributional Model

Intuition

cats — cat + ox ~ oxen’

Learn non-linear function
per transformation
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Distributional Model

Intuition

validity

cats — cat + ox ~ oxen’

unwillingness
Learn non-linear function

per transformation

Independent of valid
orthography

unwilling
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Distributional Model
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Model Overview
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Aggregation Model

ORTHOGRAPHIC
approvation

-0.2

DISTRIBUTIONAL
approval

-0.1
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Aggregation Model

Ortho Score  Distributional Score
approvation  -0.9 approval -0.6
bankruption  -0.3 bankruptcy 0.8
expertly -0.5 expertly -1.1
stroller -0.8 strolls -0.9
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Aggregation Model

Ortho Score Distributional Score
approvation  -0.9 approval -0.6
bankruption  -0.3 bankruptcy -0.8
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Aggregation Model

Ortho Score  Distributional Score  Aggregation Selection
approvation  -0.9 approval -0.6 approval
bankruption  -0.3 bankruptcy -0.8 bankruption
expertly -0.5 expertly -1.1 expertly
stroller -0.8 strolls -0.9 stroller
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Dataset

Cotterell et al. 2017

Transformation | Count | _____Example

ADVERB 1715 wise = wisely
simulate — simulation
RESULT 1251 recite — recital
overstate — overstatement
yodel = yodeler
AGENT 801 : .
survive =™ survivor
intense — intensity
NOMINAL 354 effective — effectiveness

pessimistic = pessimism
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Experiment Details

30 random restarts

* Token information: Google Book NGrams
— 360k unigram types
— Token counts aggregated

Google News pre-trained word embeddings
e Evaluation: full-token match accuracy
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Results Legend
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Token Accuracy
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&

Results

Significant improvement when combining DIST and SEQ
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Results

Frequency statistics are a valuable signal
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Results

Combined model still outperforms separate models
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Results
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Results

22% and 37% relative error reductions over SEQ
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Results by Transformation
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Results by Transformation
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Results by Transformation
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Results by Transformation
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What does each model do well?

Distributional Model Improvement over Seq2seq, per suffix
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What does each model do well?

Distributional Model Improvement over Seq2seq, per suffix
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What does each model do well?

Distributional Model Improvement over Seq2seq, per suffix
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What does each model do well?

Distributional Model Improvement over Seq2seq, per suffix
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What does each model do well?
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Conclusion

* Aggregation model for English derivational
morphology

* Dictionary-constrained decoding
* Frequency-based reranking
e Distributional model per-transformation

* Best open- and closed-vocabulary models
demonstrate 22% and 37% reduction in error

— New state-of-the-art results
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Code & Data

Code
https://github.com/danieldeutsch/derivational-morphology

Data
https://github.com/ryancotterell/derivational-paradigms
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