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Motivation

• Machine translation

• Text simplification

• Language generation
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Challenges

• Suffix ambiguity

• Orthographic irregularity
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Orthographic Model

• Seq2Seq baseline

• Dictionary-constrained decoding

• Reranking with frequency information
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Seq2Seq Baseline
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• Seq2Seq models generate 
many unattested words, but 
are reasonable guesses
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Dictionary-Constrained Decoding
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• Seq2Seq models generate 
many unattested words, but 
are reasonable guesses

• Intuition: constrain model 
to only generate known 
words
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Dictionary-Constrained Decoding
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Reranking with Frequency Information

refute Result
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Reranking with Frequency Information
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• Orthographic information 
can be unreliable

• Semantic transformation 
remains the same
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Aggregation Model
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Experiments
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Dataset

Transformation Count Example

Adverb 1715

Result 1251

Agent 801

Nominal 354

recite recital

overstate overstatement

simulate simulation

wise wisely

survive survivor

yodel yodeler

effective effectiveness

pessimistic pessimism

intense intensity

Cotterell et al. 2017

63



64

Experiment Details

• 30 random restarts

• Token information: Google Book NGrams

– 360k unigram types

– Token counts aggregated

• Google News pre-trained word embeddings

• Evaluation: full-token match accuracy
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Frequency statistics are a valuable signal
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Combined model still outperforms separate models
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Results by Transformation
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What does each model do well?
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What does each model do well?
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Conclusion

• Aggregation model for English derivational 
morphology

• Dictionary-constrained decoding

• Frequency-based reranking

• Distributional model per-transformation

• Best open- and closed-vocabulary models 
demonstrate 22% and 37% reduction in error
– New state-of-the-art results
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Code & Data

Code

https://github.com/danieldeutsch/derivational-morphology

Data

https://github.com/ryancotterell/derivational-paradigms

Powered by
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