Learning How to Actively Learn: A Deep Imitation Learning Approach

Ming Liu

Joint Work with: Wray Buntine and Reza Haffari Monash University, Australia

{ming.m.liu, wray.buntine, gholamreza.haffari} @monash.edu

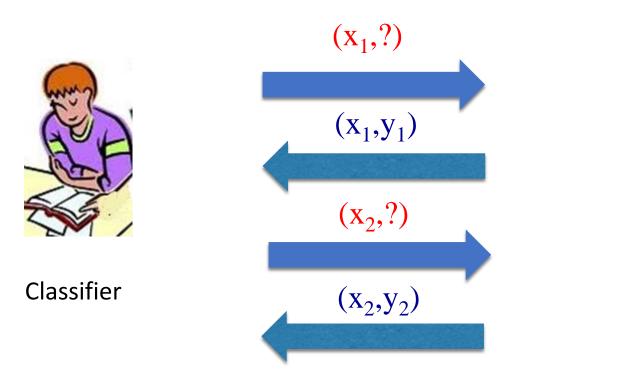
Roadmap

- Introduction to active learning (AL)
- Markov decision process (MDP) for agent-based AL
- Deep imitation learning to train the AL policy
- Experiments & Analysis

Roadmap

- Introduction to active learning (AL)
- Markov decision process (MDP) for agent-based AL
- Deep imitation learning to train the AL policy
- Experiments & Analysis

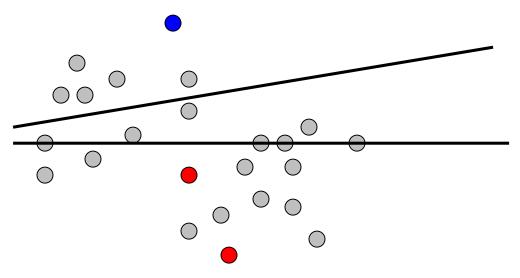
Raw unlabeled data points X_1, X_2, \ldots



Oracle/Expert: Provides labels for queries

4

• At any time during the AL process, we have a current guess for the classifier

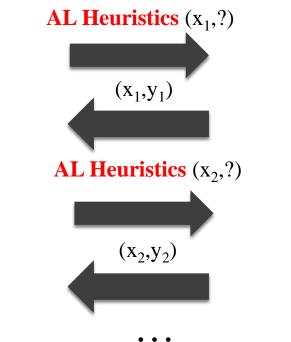


• AL Strategy: Query the point closest to the decision boundary

F

Warnings:

- Not clear whether heuristics lead to optimal querying behavior
- Not clear which hard coded heuristic is good for a task at hand



Oracle/Expert: Provides labels for queries

Ē

Can we learn the best active learning strategy ?

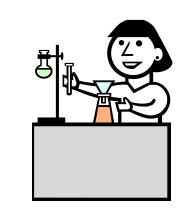
AL Agent $(x_1,?)$

 (x_1, y_1)

AL Agent $(x_2,?)$

 (x_2, y_2)

Classifier



Oracle/Expert: Provides labels for queries

7

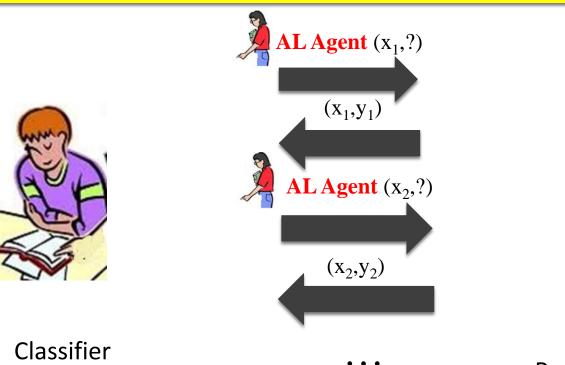
Roadmap

- Introduction to active learning (AL)
- Markov decision process (MDP) for agent-based AL
- Deep imitation learning to train the AL policy
- Experiments & Analysis

Agent-based Active Learning

Need to train an AL agent to tell what data to select next, given

- the previously selected data
- the pool of unlabeled data available
- the underlying classifier, learned so far



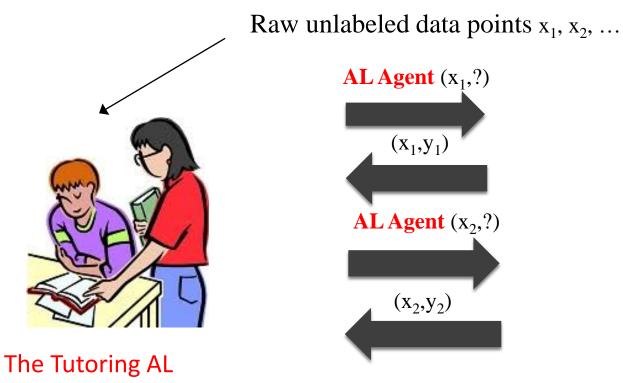
Oracle/Expert: Provides labels for queries

∄

9

AL Query Strategy by an Agent

Ē



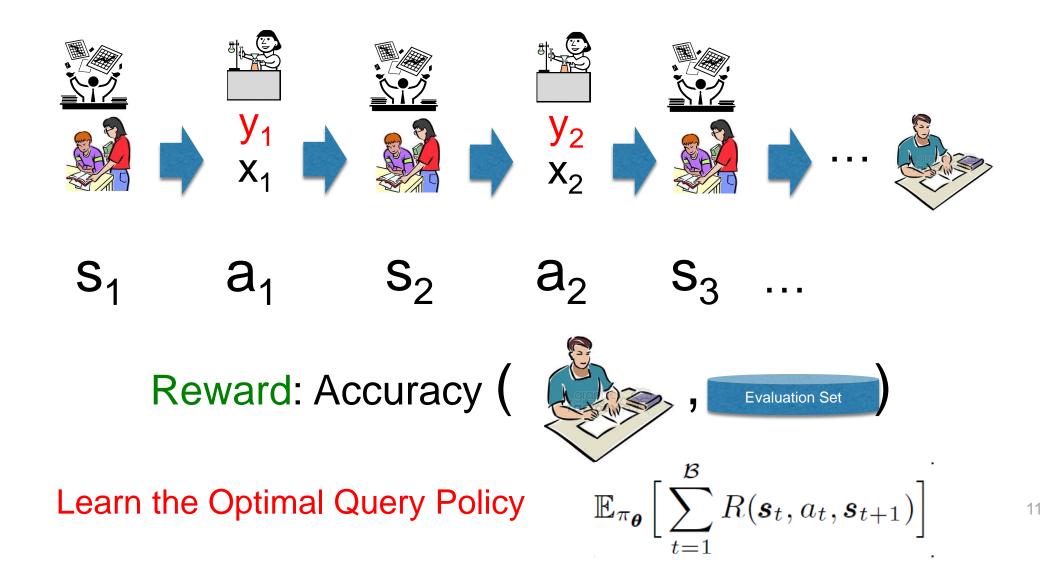
Agent & Learning

Student (Classifier)

Oracle/Expert: Provides labels for queries

10

Agent Operates in Markov Decision Process

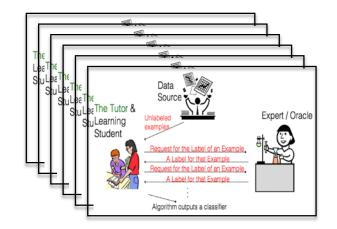


Roadmap

- Introduction to active learning (AL)
- Markov decision process (MDP) for agent-based AL
- Deep imitation learning to train the AL policy
- Experiments & Analysis

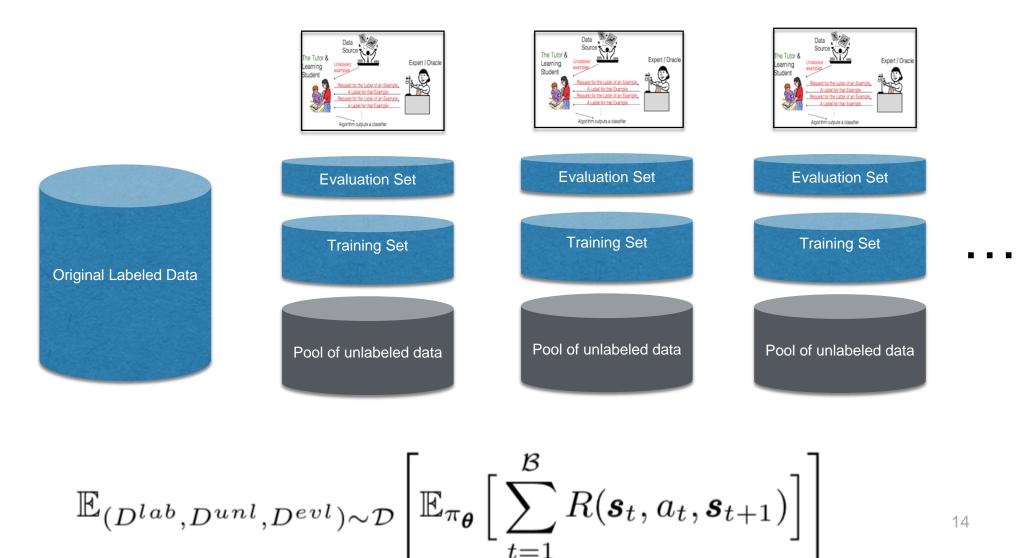
Training Agent's Policy

- IDEA: Let's train the agent based on AL simulation for a rich-data task and then transfer it to AL problem of interest
- This is Meta-Learning: Learning to Actively Learn
 - Synthesize many AL problems
 - Use Imitation/Reinforcement Learning algorithms



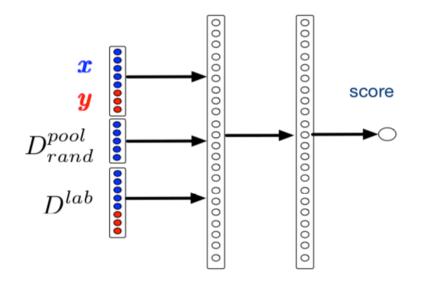
Synthesizing AL Problems

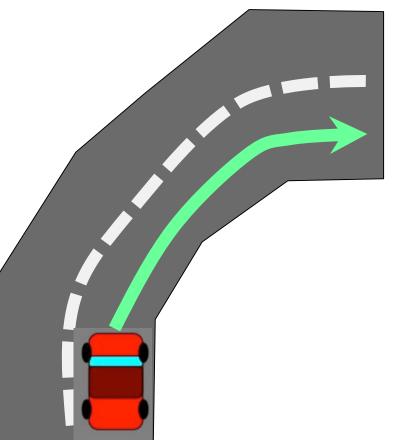
Ę



Imitation Learning

- The algorithmic oracle gives the correct action in each world state
- Train the agent (policy network) to prefer the "correct" action compared to "incorrect" ones (i.e. classification)





Algorithmic Oracle

- It computes the correct action in each world state
 - Re-train the underlying model using all possible queries/actions
 - Mark the one leading to the most accurate prediction on the evaluation set

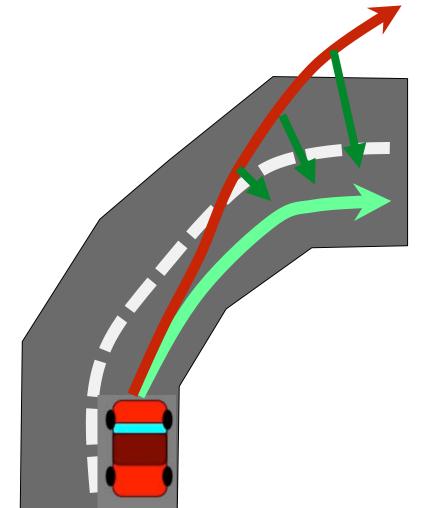
- Too slow for typical large pools of data
- IDEA: Randomly sample a subset and maximize over it
 - Leads to efficient training and effective learned policies

Imitation Learning DAGGER

- The collected state-action pairs are not i.i.d. hence problematic for classifier learning
- Data Aggregation (DAGGER): Once in a while, use the predicted action by the policy network during training (Ross et al 2011)

$$\pi_{\tau} = \beta_{\tau} \tilde{\pi}^* + (1 - \beta_{\tau}) \hat{\pi}_{\tau}$$

 This is to make sure the policy sees bad states and the correct action to recover from them in the training time



Roadmap

- Introduction to active learning (AL)
- Markov decision process (MDP) for agent-based AL
- Deep imitation learning to train the AL policy
- Experiments & Analysis

Experiments (Task 1: text classification)

- Sentiment Classification: Positive/Negative sentiment of a review
 - Train the AL policy on one product, and apply to the reviews of another
- Authorship Profiling: Gender of the author of a tweet
 - Train the AL policy on one language, and apply to another

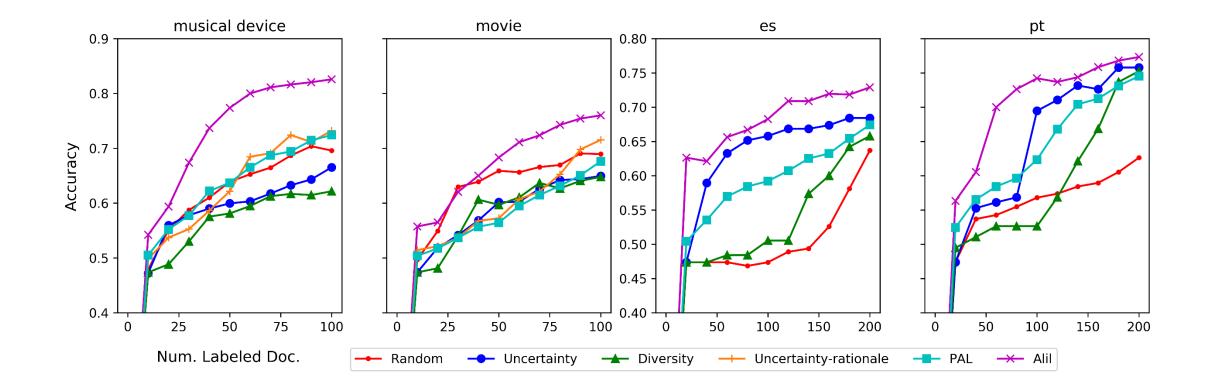
		doc. (src/tgt)		
src	tgt	number	avg. len. (tokens)	
elec.	music dev.	27k/1k	35/20	
book	movie	24k/2k	140/150	
en	sp	3.6k/4.2k	1.15k/1.35k	
en	pt	3.6k/1.2k	1.15k/1.03k	

Experiments (Baseline methods)

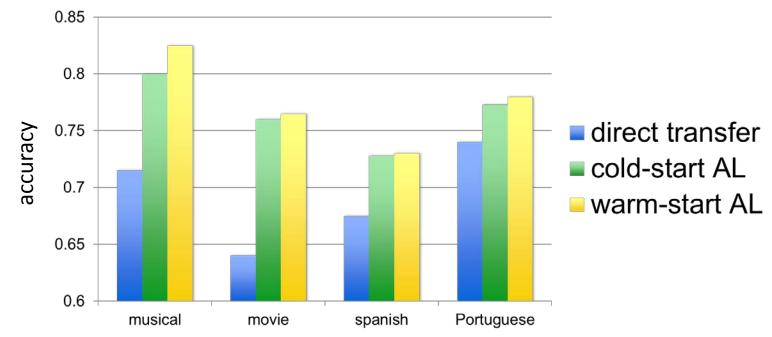
- Random sampling
- Uncertainty-based sampling
- Diversity-based sampling
- PAL (Fang et al., 2017) : A deep reinforcement learning based approach, they designed a Q-network for stream-based AL

Experiments (Task 1: text classification)

Ļ



Experiments (Task 1: text classification)



- Direct transfer: Initialize the classifier on the source data, without AL
- Cold-start: Start training the classifier from random initialization, continue training with AL agent
- Warm-start: Start training the classifier from the pre-trained model on the source data, continue training with AL agent

Experiments (Task 2: Named Entity Recognition)

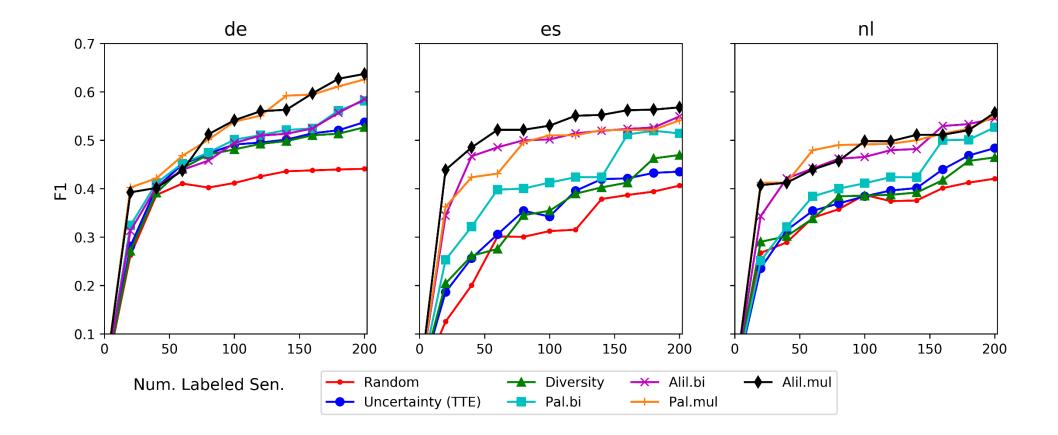
• Data sets: CoNLL 2002/2003

Bilingual		Multilingual		
tgt	src	tgt	src	
de	en	de	en,nl,es	
nl	en	nl	en,de,es	
es	en	es	en,de,nl	

Table 2: Experimental settings for cross lingual NER, in which source language (src) is used for policy training.

Experiments (Task 2: Named Entity Recognition)

Ę



Analysis: Insight on the selected data

Ę

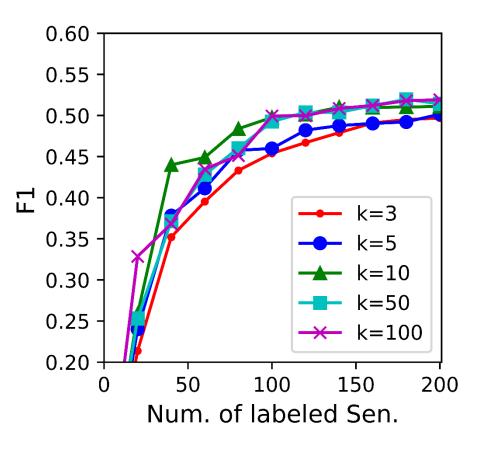
		movie sentiment	gender pt	NER es
$acc = \frac{total \# of \ overlapped \ examples}{budget}$	acc Unc.	0.06	0.58	0.51
Duuget	MRR Unc.	0.083	0.674	0.551
	acc Div.	0.05	0.52	0.45
$MRR = \frac{1}{ Q } \sum_{i=1}^{ Q } \frac{1}{rank_i}$	MRR Div.	0.057	0.593	0.530
$ Q = Tank_i$	acc PAL	0.15	0.56	0.52

We use MRR(Mean reciprocal rank) and acc to show the agreement of queried data points returned by our AL agent and other strategies.

Analysis: Sensitivity to K (size of unlabeled subset)

K: size of subset from the original unlabelled set

Ę



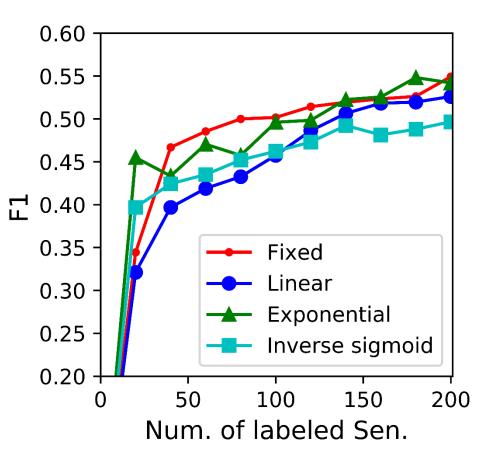
Analysis :β (schedule parameter for the policy)

$$\pi_{\tau} = \beta_{\tau} \tilde{\pi}^* + (1 - \beta_{\tau}) \hat{\pi}_{\tau}$$

Options for β

Ę

- Fixed: β=0.5
- Linear: $\beta_{\tau} = \max(0.5, 1 0.01\tau)$
- Exponential: $\beta_{\tau}=0.9^{\tau}$
- Inverse sigmoid: $\beta_{\tau} = \frac{5}{5 + \exp(\tau/5)}$



Related work

• Meta learning eg learning to learn without gradient descent by gradient descent (Chen et al 2016)

 Stream-based AL as MDP; learning the policy with reinforcement learning (Fang et al, 2017) suffers from the credit assignment problem (Bechman et al 2017)

 Imitation Learning: Lerning from expert demonstrations eg (Schaal 2009, Abbeel & Ng 2004, Silver et al 2008)

Conclusion

- Use heuristics or learn an agent for the AL query strategy.
- Agent-based AL as a Markov Decision Process.
- Formulate learning AL strategies/policies as an imitation learning problem.
- Our imitation learning approach performs better than previous heuristic-based and RL-based methods.

Thanks