

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

1. Reliability

		Inter-rater	Intra	Intra-rate	
	Rating Type	lpha	Mean α	Sto	
_	5-point	0.2308	0.4014	0.1	
	+ normalization	0.2820	0.4014		
	+ filtering	0.5059	0.5527	0.0	
	Pairwise	0.2385	0.5085	0.2	
	+ filtering	0.3912	0.7264	0.0	
abla	1. Massuring intor o	nd intro rotor r			

Table 1: Measuring inter- and intra-rater reliability with Krippendorff's α .

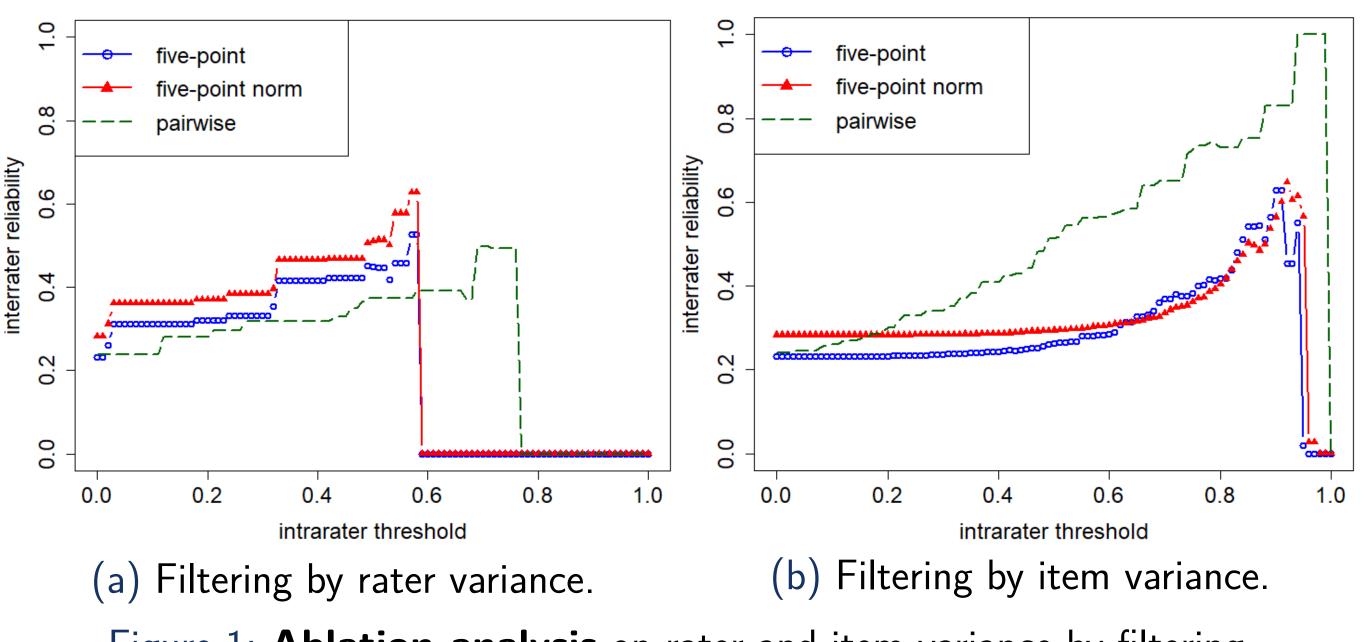


Figure 1: Ablation analysis on rater and item variance by filtering.

Avg. subjective difficulty [1-10] Rating Type

5-point	4.8
Pairwise	5.69

Table 2: Subjective difficulty, judged by raters.

Difficulties with **5**-point ratings:

► Weighing of error types; long sentences with few essential errors

Difficulties with **Pairwise** ratings (incl. ties):

- Distinction between similar or similarly bad translations
- ► No normalization for individual biases
- ► Ties: no absolute anchoring of the quality of the pair

Reliability and Learnability of Human Bandit Feedback for Sequence-to-Sequence Reinforcement Learning

Julia Kreutzer¹ Joshua Uyheng³ Stefan Riezler^{1,2} ¹CL & ²IWR, Heidelberg University, Germany, ³Deps. of Psychology & Mathematics, Ateneo de Manila University, Philippines

er

dev α

.1907

.0470

2096

.0533

Summary

Are *pairwise* ratings better for human NMT than standard 5-point ratings?

 \blacktriangleright Collected & analyzed \sim 15 ratings for

Both have comparable inter-/intra-ar

Up to 1.1 BLEU improvement with rev

 \Rightarrow Best reliability, learnability, and NM filtered **5-point** feedback.

Data: http://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

2. Learnability

Model	Feedback	Sp
MSE	5-point norm.	
	+ filtering	
PW	Pairwise	
	+ filtering	

Table 3: Correlation between estimated rewards and TER.

Overcome feedback sparsity with a **reward estimator** $\hat{r}_{\psi}(\cdot)$.

5-point feedback: standard MSE on scaled ratings. $\mathcal{L}^{MSE}(\boldsymbol{\psi}) = \frac{1}{n} \sum_{i=1}^{n} (r(\mathbf{y}_i) - \hat{r}_{\boldsymbol{\psi}}(\mathbf{y}_i))^2.$

Pairwise

e feedback: predict human preferences
$$Q[\cdot \succ \cdot]$$
.
 $\mathcal{L}^{PW}(\boldsymbol{\psi}) = -\frac{1}{n} \sum_{i=1}^{n} Q[\mathbf{y_i^1} \succ \mathbf{y_i^2}] \log \hat{P}_{\boldsymbol{\psi}}[\mathbf{y_i^1} \succ \mathbf{y_i^2}] + Q[\mathbf{y_i^2} \succ \mathbf{y_i^1}] \log \hat{P}_{\boldsymbol{\psi}}[\mathbf{y_i^2} \succ \mathbf{y_i^1}],$
Bradley-Terry model for preferences
 $\hat{P}_{\boldsymbol{\psi}}[\mathbf{y}^1 \succ \mathbf{y}^2] = \frac{\exp \hat{r}_{\boldsymbol{\psi}}(\mathbf{y}^1)}{\exp \hat{r}_{\boldsymbol{\psi}}(\mathbf{y}^1) + \exp \hat{r}_{\boldsymbol{\psi}}(\mathbf{y}^2)}.$

with the

reinforcement learning in		
800 translations.		
nnotator α -agreement.		
ward estimator		
AT gains for normalized,		

pearman's ρ -0.2193 -0.2341 -0.1310 -0.1255

3. Reinforcement Learning

Model	Rewards	BLEU	METEOR	BEER
Baseline	_	27.0	30.7	59.48
OPL	5-point norm.	27.5	30.9	59.72
RL	5-point norm.	28.1	31.5	60.21
	+ filtering	28.1	31.6	60.29
RL	Pairwise	27.8	31.3	59.88

Table 4: **NMT** domain adaptation (WMT \rightarrow TED) with offline human feedback.

Neural Machine Translation. Standard 1-layer Encoder-Decoder with MLP-Attention, pre-trained on 5.9M WMT17 translations from German to English. Training is continued with weak feedback only.

translations from the logging system.

$$\mathcal{R}^{OPL}(\boldsymbol{\theta}) = \frac{1}{H} \sum_{h=1}^{H} r(\mathbf{y}^{(h)}) \, \bar{p}_{\boldsymbol{\theta}}(\mathbf{y}^{(h)} | \mathbf{x}^{(h)}),$$

$$\mathcal{R}^{RL}(\boldsymbol{\theta}) = \mathbb{E}_{p(\mathbf{x})p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x})} \left[\hat{r}_{\psi}(\mathbf{y}) \right] \\ \approx \sum_{s=1}^{S} \sum_{i=1}^{k} p_{\boldsymbol{\theta}}^{\tau}(\mathbf{\tilde{y}}_{i}^{(s)}|\mathbf{x}^{(s)}) \hat{r}_{\psi}(\mathbf{\tilde{y}}_{i})$$

- variance (baseline control variate)

Off-Policy Learning (OPL) from Direct Rewards. Improve the MT system from a log $L = \{(\mathbf{x}^{(h)}, \mathbf{y}^{(h)}, r(\mathbf{y}^{(h)}))\}_{h=1}^{H}$ of rewarded

► Reweighting over mini-batch *B*: $\bar{p}_{\theta}(\mathbf{y}^{(h)}|\mathbf{x}^{(h)}) = \frac{p_{\theta}(\mathbf{y}^{(h)}|\mathbf{x}^{(h)})}{\sum_{b=1}^{B} p_{\theta}(\mathbf{y}^{(b)}|\mathbf{x}^{(b)})}$ Only logged translations are reinforced, i.e. no exploration

RL from Estimated Rewards. Expected estimated reward maximization (REINFORCE), approximated with k samples (\rightarrow MRT):

Softmax temperature controls sharpness of sampling distribution $p_{\theta}^{\tau}(\mathbf{y}|\mathbf{x}) = \mathsf{softmax}(\mathbf{o}/\tau)$, i.e. the amount of exploration Subtract the running average of rewards from \hat{r}_{ψ} to reduce