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Language Change

Languages change over time
● Both an internal and external process
● Fundamentally social
● Individuals acquire language and transmit it to future generations
● New variants propagate through populations

Modelling Change
● Must model how the individual reacts to linguistic input and to the 

community
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Example - The Cot-Caught Merger
● /ɒ/ “cot” is pronounced the same 

as /ɔ/ “caught”
● Minimal pairs distinguished by 

/ɒ/~/ɔ/ become homophones

/ɒ/ /ɔ/
cot caught
Don Dawn
collar caller
knotty naughty
odd awed
pond pawned
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Example - The Cot-Caught Merger
● /ɒ/ “cot” is pronounced the same 

as /ɔ/ “caught”
● Present in many dialects of North 

American English
○ Eastern New England
○ Western Pennsylvania
○ Lower Midwest
○ West
○ Canada (all)
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Example - The Cot-Caught Merger
● /ɒ/ “cot” is pronounced the same 

as /ɔ/ “caught”
● Present in many dialects of North 

American English
○ Eastern New England
○ Western Pennsylvania
○ Lower Midwest
○ West
○ Canada (all)

● Spreading into Rhode Island 
(Johnson 2007)
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Example - The Cot-Caught Merger
● /ɒ/ “cot” is pronounced the same 

as /ɔ/ “caught”
● Present in many dialects of North 

American English
○ Eastern New England
○ Western Pennsylvania
○ Lower Midwest
○ West
○ Canada (all)

● Spreading into Rhode Island 
● Rapid! Families with Non-merged 

parents and older siblings but 
merged younger siblings 6
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Existing Frameworks
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Three Classes of Framework

1. Swarm Frameworks
2. Network Frameworks
3. Algebraic Frameworks
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Three Classes of Framework

1. Swarm Frameworks
○ Individual agents on a grid moving randomly and interacting (ABM)
○ e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & 

Kenny 2013
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Three Classes of Framework

1. Swarm Frameworks
○ Individual agents on a grid moving randomly and interacting (ABM)
○ e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & 

Kenny 2013
+ Bloomfield (1933)’s Principle of Density for free
+ Diffusion is straightforward
- Not a lot of control over the network
- Thousands of degrees of freedom 

-> should run many many times 
-> slow
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Three Classes of Framework

1. Swarm Frameworks
2. Network Frameworks

○ Speakers are nodes in a graph, edges are possibility of interaction
○ e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et 

al. 2010, Minett & Wang 2008, Kauhanen 2016
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Three Classes of Framework

1. Swarm Frameworks
2. Network Frameworks

○ Speakers are nodes in a graph, edges are possibility of interaction
○ e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et 

al. 2010, Minett & Wang 2008, Kauhanen 2016
+ Much more control over network structure
+ Easy to model concepts from the sociolinguistic lit. (e.g., Milroy & Milroy)

- Nodes only interact with immediate neighbours -> slow and less realistic?
- Practically implemented as random interactions between neighbours -> 

same problem as #1
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Three Classes of Framework

1. Swarm Frameworks
2. Network Frameworks
3. Algebraic Frameworks

○ Expected outcome of interactions is calculated analytically
○ e.g., Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, 

Niyogi & Berwick 1997, Yang 2000, Niyogi & Berwick 2009
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Three Classes of Framework

1. Swarm Frameworks
2. Network Frameworks
3. Algebraic Frameworks

○ Expected outcome of interactions is calculated analytically
○ e.g., Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, 

Niyogi & Berwick 1997, Yang 2000, Niyogi & Berwick 2009
+ Closed-form solution rather than simulation -> faster and more direct
- No network structure! Always implemented over perfectly mixed 

populations
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Three Classes of Framework

1. Swarm Frameworks
2. Network Frameworks
3. Algebraic Frameworks

This proliferation of “boutique” frameworks is a problem
● An ad hoc framework risks “overfitting” the pattern
● Comparison between frameworks is challenging
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Our Framework
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Best of All Worlds

Impose density effects on a network structure and calculate 
the outcome of each iteration analytically
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Best of All Worlds

Impose density effects on a network structure and calculate 
the outcome of each iteration analytically

Swarm
+ Captures the Principle of Density

Network
+ Models key facts about social networks

Algebraic
+ No random process in the core algorithm 18



The Model

Language change as a two-step loop
1. Propagation: Variants distribute through the network
2. Acquisition:  Individuals internalize them

19



Vocabulary

L: That which is transmitted
Language ≈ Variant ≈ Sample

G: That which generates/describes/distinguishes L
That which is learned/influenced by L
Grammar ≈ Variety ≈ Latent Variable
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Binary G Examples

G: {Merged grammar, Non-merged grammar}
L: Merged or non-merged instances of cot and caught words

G: {Dived-generating grammar, Dove-generating grammar}
L: Instances of the past tense of dive as dived or dove

G: {have+NEG = haven’t got grammar, have+NEG = don’t have grammar}
L: Instances of haven’t got and instances of don’t have
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The Model

Language change as a two-step loop
1. Propagation: L distributes through the network
2. Acquisition:  Individuals react to L to create G

If this were a linear chain,

L0 → G1 → L1 → G2 → L2 → … → Ln → Gn+1 → ...
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The Model

Language change as a two-step loop
1. Propagation: L distributes through the network
2. Acquisition:  Individuals react to L to create G

Generic. Not problem-specific.
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Intuition behind Propagation Algorithm
For T iterations,

For the individual at  each node
Begin travelling;
While travelling

Randomly select outgoing edge
by weight and follow it OR stop;

Increase chance of stopping next time;
End
Interact with the individual at the current

Node;
End 

End 24



Intuition behind Propagation Algorithm
For T iterations,

For the individual at  each node
Begin travelling;
While travelling

Randomly select outgoing edge
by weight and follow it OR stop;

Increase chance of stopping next time;
End
Interact with the individual at the current

node;
End 

End 25

Nodes are not individuals.
Individuals “stand on” nodes



Intuition behind Propagation Algorithm
For T iterations,

For the individual at  each node
Begin travelling;
While travelling

Randomly select outgoing edge
by weight and follow it OR stop;

Increase chance of stopping next time;
End
Interact with the individual at the current

node;
End 

End 26

Weighted or unweighted,
Directed or undirected

Individuals “travel” along 
edges and find someone to 
interact with



Intuition behind Propagation Algorithm
For T iterations,

For the individual at  each node
Begin travelling;
While travelling

Randomly select outgoing edge
by weight and follow it OR stop;

Increase chance of stopping next time;
End
Interact with the individual at the current

node;
End

End  27

Weighted or unweighted,
Directed or undirected
Determine who this node 

Individuals connected by 
shorter or higher weighted 
paths are more likely to 
interact.



Intuition behind Propagation Algorithm
For T iterations,

For the individual at  each node
Begin travelling;
While travelling

Randomly select outgoing edge
by weight and follow it OR stop;

Increase chance of stopping next time;
End
Interact with the individual at the current

node;
End 

End 28

Weighted or unweighted,
Directed or undirected

Rather than simulating 
interactions in a loop, 
calculate a closed-form 
solution



The Propagation Function

E = GT α(I - (1 - α) A)-1
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The Propagation Function

E = GT α(I - (1 - α) A)-1 
The Linguistic Environment
● E is a g x n matrix: n individuals, g possible grammars
● For each individual, the proportion of input drawn from each grammar
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The Propagation Function 

E = GT α(I - (1 - α) A)-1 
The Linguistic Environment
Distribution of Grammars

● Of the previous generation
● G is an n x g matrix
● Proportions by which each individual produces L
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The Propagation Function 

E = GT α(I - (1 - α) A)-1

The Linguistic Environment
Distribution of Grammars
Interaction Probabilities

● A is an n x n adjacency matrix
● The probabilities that nodes i, j interact given that the number of 

steps travelled declines by a geometric distribution
● α parameter from that distribution [0,1] 32



The Acquisition Function 

● Problem-specific
● Should take Et as input and produce Gt+1 as output
● In the simplest case (neutral change), Gt+1 = Et

T

● The following case study uses a variational learner
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Case Study
Spread of the Cot-Caught Merger
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Model for Merger Acquisition (Yang 2009)

Learners will acquire the merged grammar iff more than ~17% of 
their environment is merged
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Model for Merger Acquisition (Yang 2009)

Learners will acquire the merged grammar iff more than ~17% of 
their environment is merged

+ Accounts for mergers’ tendency to spread (Labov 1994)
+ 17% is close to the merged rate estimated in Johnson 2007
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Model for Merger Acquisition (Yang 2009)

Learners will acquire the merged grammar iff more than ~17% of 
their environment is merged

+ Accounts for mergers’ tendency to spread (Labov 1994)
+ 17% is close to the merged rate estimated in Johnson 2007
- In a perfectly-mixed model, population will immediately fix at 100% g+ or g-
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Model for Merger Acquisition (Yang 2009)

Claim: The merged grammar has a processing advantage
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Model for Merger Acquisition (Yang 2009)

Claim: The merged grammar has a processing advantage
Claim: Merged listeners have a lower rate of initial misinterpretation
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Model for Merger Acquisition (Yang 2009)

Claim: The merged grammar has a processing advantage
Claim: Merged listeners have a lower rate of initial misinterpretation
Claim: Only minimal pairs are relevant
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Model for Merger Acquisition (Yang 2009)

Claim: The merged grammar has a processing advantage
Claim: Merged listeners have a lower rate of initial misinterpretation
Claim: Only minimal pairs are relevant
● If speaker A- and listener B- are both non-merged, B- misunderstands A- at the 

rate of mishearing one vowel for the other (A- said /ɒ/ but B- heard /ɔ/)
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Model for Merger Acquisition (Yang 2009)

Claim: The merged grammar has a processing advantage
Claim: Merged listeners have a lower rate of initial misinterpretation
Claim: Only minimal pairs are relevant
● If speaker A- and listener B- are both non-merged, B- misunderstands A- at the 

rate of mishearing one vowel for the other (A- said /ɒ/ but B- heard /ɔ/)
● If A+ speaks to B-, B- initially misunderstands whenever A+ says /ɒ/ when B- 

expects /ɔ/ and visa-versa

42



Model for Merger Acquisition (Yang 2009)

Claim: The merged grammar has a processing advantage
Claim: Merged listeners have a lower rate of initial misinterpretation
Claim: Only minimal pairs are relevant
● If speaker A- and listener B- are both non-merged, B- misunderstands A- at the 

rate of mishearing one vowel for the other (A- said /ɒ/ but B- heard /ɔ/)
● If A+ speaks to B-, B- initially misunderstands whenever A+ says /ɒ/ when B- 

expects /ɔ/ and visa-versa
● If A- or A+ speaks to B+, B+ cannot hear A-’s distinctions. Initial 

misunderstandings come down to lexical access - if the intended meaning is not 
the most frequent meaning (Carmazza et al 2001)
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Variational Model for Merger Acquisition 

Probability of initial misunderstanding depends on 
● minimal pair frequencies 
● mix merged (+) and non-merged (-) speakers in the environment
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Variational Model for Merger Acquisition 

Probability of initial misunderstanding depends on 
● minimal pair frequencies 
● mix merged (+) and non-merged (-) speakers in the environment

Using minimal pair frequencies estimated from SUBTLEXus and a 
variational learner, learners will acquire the merged grammar iff 
more than ~17% of their environment is merged (Yang 2009)
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Acquisition Function

Two Grammars:
Merged grammar g+
Non-merged grammar g-

Precomputed Acquisition Function
An individual acquires 100% g+ if >17% environment is generated by 
the g+, else acquire 100% g-
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Network Model
● 100 clusters of 75 individuals each
● Each cluster is centralised randomly such that 

some community members are better 
connected than others
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MA 
(Merged)

RI 
(Non-Merged)



Network Model
● 100 clusters of 75 individuals each
● Each cluster is centralised randomly such that 

some community members are better 
connected than others

● One cluster begins 100% merged 
(Massachusetts) 

● The rest start 100%  non-merged (Rhode 
Island)
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Network Model
● 100 clusters of 75 individuals each
● Each cluster is centralised randomly such that 

some community members are better 
connected than others

● One cluster begins 100% merged 
(Massachusetts) 

● The rest start 100%  non-merged (Rhode 
Island)

● Half the RI clusters are connected to the MA 
cluster (the “Frontier”)
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Network Model
● 100 clusters of 75 individuals each
● Each cluster is centralised randomly such that 

some community members are better 
connected than others

● One cluster begins 100% merged 
(Massachusetts) 

● The rest start 100%  non-merged (Rhode 
Island)

● Half the RI clusters are connected to the MA 
cluster (the “Frontier”)

● Two members of each RI cluster are randomly 
connected to other clusters

50
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RI 
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Merger Rate in Rhode Island over Time
● The average merger rate across all 

Rhode Island clusters follows an 
S-shape

● The 99 RI community cluster curves 
are also S-shaped
○ Staggered in time
○ Steep slopes = rapid change

51

Cluster Merger Rates
Rhode Island Avg



Conclusions

The Propagation Function
● Removes the need to simulate interactions
● Is widely applicable rather than made-to-order

The Cot-Caught Application
● Predicts behaviour consistent with the empirical data
● And with principles of language change
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End
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Variational Learner (Yang 2000)
● Learners consider multiple 

grammars g1, g2 simultaneously
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● P(g1) = p,     P(g2) = q,     p+q = 1



Variational Learner (Yang 2000)
● Learners consider multiple 

grammars g1, g2 simultaneously
● Each g is penalised when it 

cannot parse an input
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● p’ =
p + γq, if g1 parses input
(1-γ)p, if g1 fails



Variational Learner (Yang 2000)
● Learners consider multiple 

grammars g1, g2 simultaneously
● Each g is penalised when it 

cannot parse an input
● The g with lower penalty 

probability has the advantage
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● p’ =

● limt→∞ pt = C2 / (C1 + C2)
● limt→∞ qt = C1 / (C2 + C1)

p + γq, if g1 parses input
(1-γ)p, if g1 fails



Variational Learner (Yang 2000)
● Learners consider multiple 

grammars g1, g2 simultaneously
● Each g is penalised when it 

cannot parse an input
● The g with lower penalty 

probability has the advantage
● If mature speakers adopt one 

grammar categorically, the one 
with smaller C wins
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● P(g1) = p,     P(g2) = q,     p+q = 1

● p’ =

● limt→∞ pt = C2 / (C1 + C2)
● limt→∞ qt = C1 / (C2 + C1)

● limt→∞ pt = 

p + γq, if g1 parses input
(1-γ)p, if g1 fails

1, if C1 < C2
0, if C2 < C1



Variational Model for Merger Acquisition 

Penalty probabilities depend on 
● minimal pair frequencies 
● mix merged (+) and non-merged (-) speakers in the environment
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Variational Model for Merger Acquisition 

Penalty probabilities depend on 
● minimal pair frequencies 
● mix merged (+) and non-merged (-) speakers in the environment

mi, ni = frequencies of each member of a minimal pair
H = Σi mi + ni
ε = probability of mishearing one vowel for the other

C+ = (1/H) Σi min(mi, ni)  hearing the less freq word
C- = (1/H) Σi [p+((1-εm)mi + εnni) mishearing + input

    + p-(εmmi + εnni)] misinterpreting - input
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Results - Updating Connections
● Social connections change constantly
● Rewire the edges (recalculate A) at every 

iteration
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Results - Updating Connections
● Social connections change constantly
● Rewire the edges (recalculate A) at every 

iteration

● The outcome is similar, but clusters tipping 
points are temporally closer

● No cluster remains particularly well or poorly 
connected for long
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Fractional Updating
● The merger spreads rapidly enough to 

distinguish older and younger siblings
● Only a fraction of the population is of the 

correct age at any moment
● Update only 10% of random nodes at every 

iteration
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Fractional Updating
● The merger spreads rapidly enough to 

distinguish older and younger siblings
● Only a fraction of the population is of the 

correct age at any moment
● Update only 10% of random nodes at every 

iteration

● Similar outcome with wider spread between 
cluster “tipping points”

● Simulation took about 5x as long because
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Results - Network Size
● Tested our network size assumptions
● Repeat the experiment with 40 clusters of 18 

individuals each
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Results - Network Size
● Tested our network size assumptions
● Repeat the experiment with 40 clusters of 18 

individuals each

● Qualitatively similar
● The S-shape is less S-shaped
● Individual clusters shows step pattern
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Results - Community Averages
● At small network sizes, the community average 

is more sensitive to random connections
● Repeat the small-scale experiment 10 times
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Results - Community Averages
● At small network sizes, the community average 

is more sensitive to random connections
● Repeat the small-scale experiment 10 times

● The slope is ~consistent in most simulations
● A few simulations show aberrant behaviour
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