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Learning under Domain Shift



‣ State-of-the-art domain adaptation approaches

‣ leverage task-specific features

‣ evaluate on proprietary datasets or on a single 
benchmark

‣ Only compare against weak baselines

‣ Almost none evaluate against approaches from the 
extensive semi-supervised learning (SSL) literature
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‣ How do classics in SSL compare to recent advances?

‣ Can we combine the best of both worlds?

‣ How well do these approaches work on out-of-distribution 
data?
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‣ Calibration

‣ Output probabilities in neural networks are poorly 
calibrated.

‣ Throttling (Abney, 2007), i.e. selecting the top n highest 
confidence unlabeled examples works best.

‣ Online learning

‣ Training until convergence on labeled data and then on 
unlabeled data works best.

 6

Self-training variants
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Tri-training

1. Train three models on bootstrapped samples. 

2. Use predictions on unlabeled data for third if two agree. 

3. Final prediction: majority voting

Tri-training

y = 1y = 1 y = 0

1x
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Tri-training with 
disagreement

1. Train three models on bootstrapped samples.

2. Use predictions on unlabeled data for third if two agree 
and prediction differs.

y = 1
x

y = 1

1

y = 0- 3 
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‣ Sampling unlabeled data

‣ Producing predictions for all unlabeled examples is 
expensive

‣ Sample number of unlabeled examples 

‣ Confidence thresholding

‣ Not effective for classic approaches, but essential for 
our method
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y = 1
x

y = 1

1

Multi-task tri-training

1. Train one model with 3 objective functions.

2. Use predictions on unlabeled data for third if two agree.

Multi-task 
Tri-training

3. Restrict final layers to  
use different  
representations.

4. Train third objective  
function only on  
pseudo labeled to  
bridge domain shift.
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BiLSTM

w3
char 

BiLSTM

m1 m2 m3 m1 m2 m3 m1 m2 m3

orthogonality constraint (Bousmalis et al., 2016)

Multi-task 
Tri-training

Lorth = ∥W⊤
m1

Wm2
∥2

F

L(θ) = − ∑
i

∑
1,..,n

log Pmi
(y | ⃗h ) + γLorthLoss:

(Plank et al., 2016)



 13

Data & Tasks



 13

Data & Tasks

Two tasks: Domains:



 13

Data & Tasks

Two tasks: Domains:

Sentiment analysis on Amazon reviews dataset (Blitzer et al, 2006)



 13

Data & Tasks

Two tasks: Domains:

Sentiment analysis on Amazon reviews dataset (Blitzer et al, 2006)

POS tagging on SANCL 2012 dataset (Petrov and McDonald, 2012)
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‣ Multi-task tri-training slightly outperforms tri-training, but 

has higher variance.
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89.8

Avg over 5 target domains

Source (+embeds) Self-training Tri-training
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‣ Tri-training with disagreement works best with little data.



 16

POS Tagging Results

* result from Schnabel & Schütze (2014)

Trained on full labeled data (WSJ)

Ac
cu

ra
cy

89

89.75

90.5

91.25

92

Avg over 5 target domains

TnT Stanford* Source (+embeds)
Tri-training Tri-training-Disagr. MT-Tri



 16

POS Tagging Results

* result from Schnabel & Schütze (2014)

Trained on full labeled data (WSJ)

Ac
cu

ra
cy

89

89.75

90.5

91.25

92

Avg over 5 target domains

TnT Stanford* Source (+embeds)
Tri-training Tri-training-Disagr. MT-Tri



 16

POS Tagging Results

* result from Schnabel & Schütze (2014)

Trained on full labeled data (WSJ)

Ac
cu

ra
cy

89

89.75

90.5

91.25

92

Avg over 5 target domains

TnT Stanford* Source (+embeds)
Tri-training Tri-training-Disagr. MT-Tri



 16

POS Tagging Results

* result from Schnabel & Schütze (2014)

Trained on full labeled data (WSJ)

Ac
cu

ra
cy

89

89.75

90.5

91.25

92

Avg over 5 target domains

TnT Stanford* Source (+embeds)
Tri-training Tri-training-Disagr. MT-Tri

‣ Tri-training works best in the full data setting.



 17

POS Tagging Analysis
Accuracy on out-of-vocabulary (OOV) tokens

Ac
cu

ra
cy

 o
n 

O
O

V 
to

ke
ns

50

57.5

65

72.5

80

%
 O

O
V 

to
ke

ns

0

2.75

5.5

8.25

11

Answers Emails Newsgroups Reviews Weblogs
OOV tokens Src Tri MT-Tri



 17

POS Tagging Analysis
Accuracy on out-of-vocabulary (OOV) tokens

Ac
cu

ra
cy

 o
n 

O
O

V 
to

ke
ns

50

57.5

65

72.5

80

%
 O

O
V 

to
ke

ns

0

2.75

5.5

8.25

11

Answers Emails Newsgroups Reviews Weblogs
OOV tokens Src Tri MT-Tri



 17

POS Tagging Analysis
Accuracy on out-of-vocabulary (OOV) tokens

Ac
cu

ra
cy

 o
n 

O
O

V 
to

ke
ns

50

57.5

65

72.5

80

%
 O

O
V 

to
ke

ns

0

2.75

5.5

8.25

11

Answers Emails Newsgroups Reviews Weblogs
OOV tokens Src Tri MT-Tri



 17

POS Tagging Analysis
Accuracy on out-of-vocabulary (OOV) tokens

Ac
cu

ra
cy

 o
n 

O
O

V 
to

ke
ns

50

57.5

65

72.5

80

%
 O

O
V 

to
ke

ns

0

2.75

5.5

8.25

11

Answers Emails Newsgroups Reviews Weblogs
OOV tokens Src Tri MT-Tri

‣ Classic tri-training works best on OOV tokens.



 17

POS Tagging Analysis
Accuracy on out-of-vocabulary (OOV) tokens

Ac
cu

ra
cy

 o
n 

O
O

V 
to

ke
ns

50

57.5

65

72.5

80

%
 O

O
V 

to
ke

ns

0

2.75

5.5

8.25

11

Answers Emails Newsgroups Reviews Weblogs
OOV tokens Src Tri MT-Tri

‣ Classic tri-training works best on OOV tokens.

‣ MT-Tri does worse than source-only baseline on OOV.
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‣ No bootstrapping method works well on unknown word-
tag combinations.

‣ Less lexicalized FLORS approach is superior.

very difficult cases

* result from Schnabel 
& Schütze (2014)
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‣ We address the drawback of tri-training (space & 
time complexity) via the proposed MT-Tri model 

‣ MT-Tri works best on sentiment, but not for POS. 

‣ Importance of: 

‣ Comparing neural methods to classics (strong 
baselines) 

‣ Evaluation on multiple tasks & domains
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