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Our entire model consists of the generator network that predicts the arguments for each
predicate and the validator network that scores the outputs of the generator network.
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Experlments & Results

We use the KWDLC dataset [Hangyo+ 12] for evaluations, following [Hangyo+ 13, Shibata+ 16].
*  We evaluate our model in two tasks: case analysis and zero anaphora resolution.
* Gen isthe generator network trained with the supervised learning method, while Gen+Adv is
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* We obverse large increases of scores in ACC
and DAT cases. They have fewer training
instances and relies on external knowledge

the proposal model trained with the validator, compared with [Ouchi+15, Shibata+ 16].
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Conclusion

* We propose novel adversarial training model for PAS
analysis.

e OQur validator enables the generator to learn from an
unlabeled corpus as an external knowledge resource.

* We achieve SOTA scores in all cases of KWDLC.
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resources of predicates and arguments.
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