

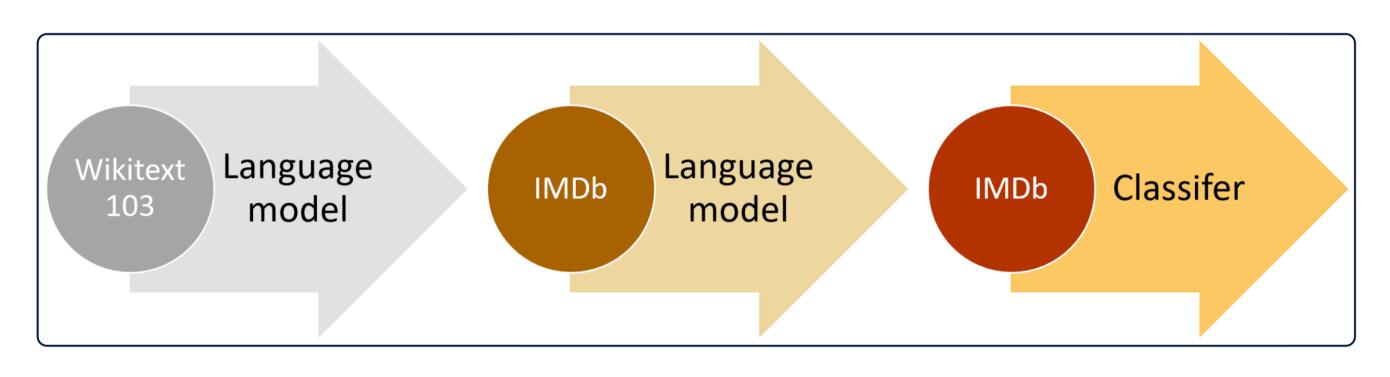
Transfer learning for NLP status quo

- Best practice: initialise first layer with pretrained word embeddings
- Recent approaches (McCann et al., 2017; Peters et al., 2018): Pretrained embeddings as fixed features. Peters et al. (2018) is task-specific.
- Why not initialise remaining parameters?
- Dai and Le (2015) first proposed fine-tuning a LM. However: No pretraining. Naive fine-tuning (require millions of in-domain documents).

Universal Language Model Fine-tuning (ULMFit)

3-step recipe for state-of-the-art on any text classification task:

- 1. Train language model (LM) on general domain data.
- 2. Fine-tune LM on target data.
- 3. Train classifier on labeled data.



(a) General-domain LM pretraining

Train LM on a large general domain corpus, e.g. WikiText-103.

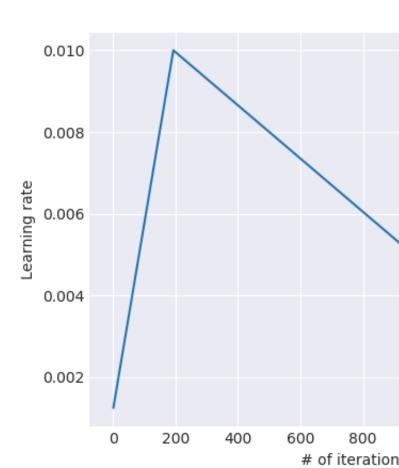
(b) Target task LM fine-tuning **Discriminative fine-tuning**

Different layers capture *different types of* information. They should be fine-tuned to different *extents* with different learning rates:

$$\theta_t^l = \theta_{t-1}^l - \eta^l \cdot \nabla_{\theta^l} J(\theta)$$

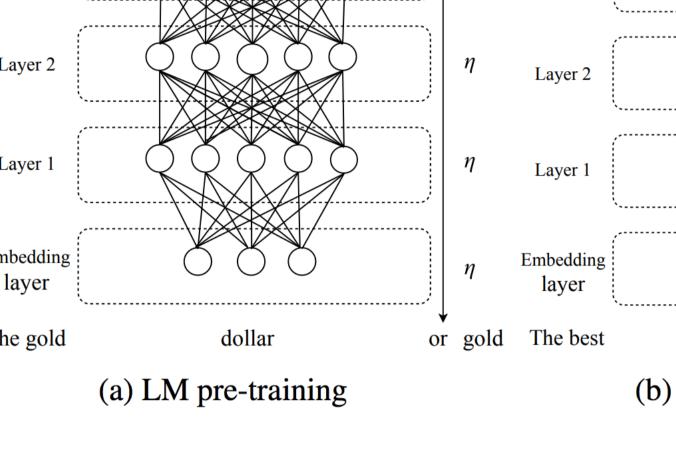
Slanted triangular learning rates

The model should converge quickly to a suitable region and then refine its parameters.



Universal Language Model Fine-tuning for Text Classification Sebastian Ruder* Jeremy Howard* * equal contribution

Softmax 1 Layer 3 Layer 3 Layer 2 Layer 2 Layer 1 Layer 1 Embedd (b) LM fine-tuning



(c) Target task classifier fine-tuning Train classification layer on top of LM.

Concat pooling

Concatenate pooled representations of hidden states to capture long document contexts:

 $\mathbf{h}_{c} = [\mathbf{h}_{T}, \text{maxpool}(\mathbf{H}), \text{meanpool}(\mathbf{H})]$

Gradual unfreezing

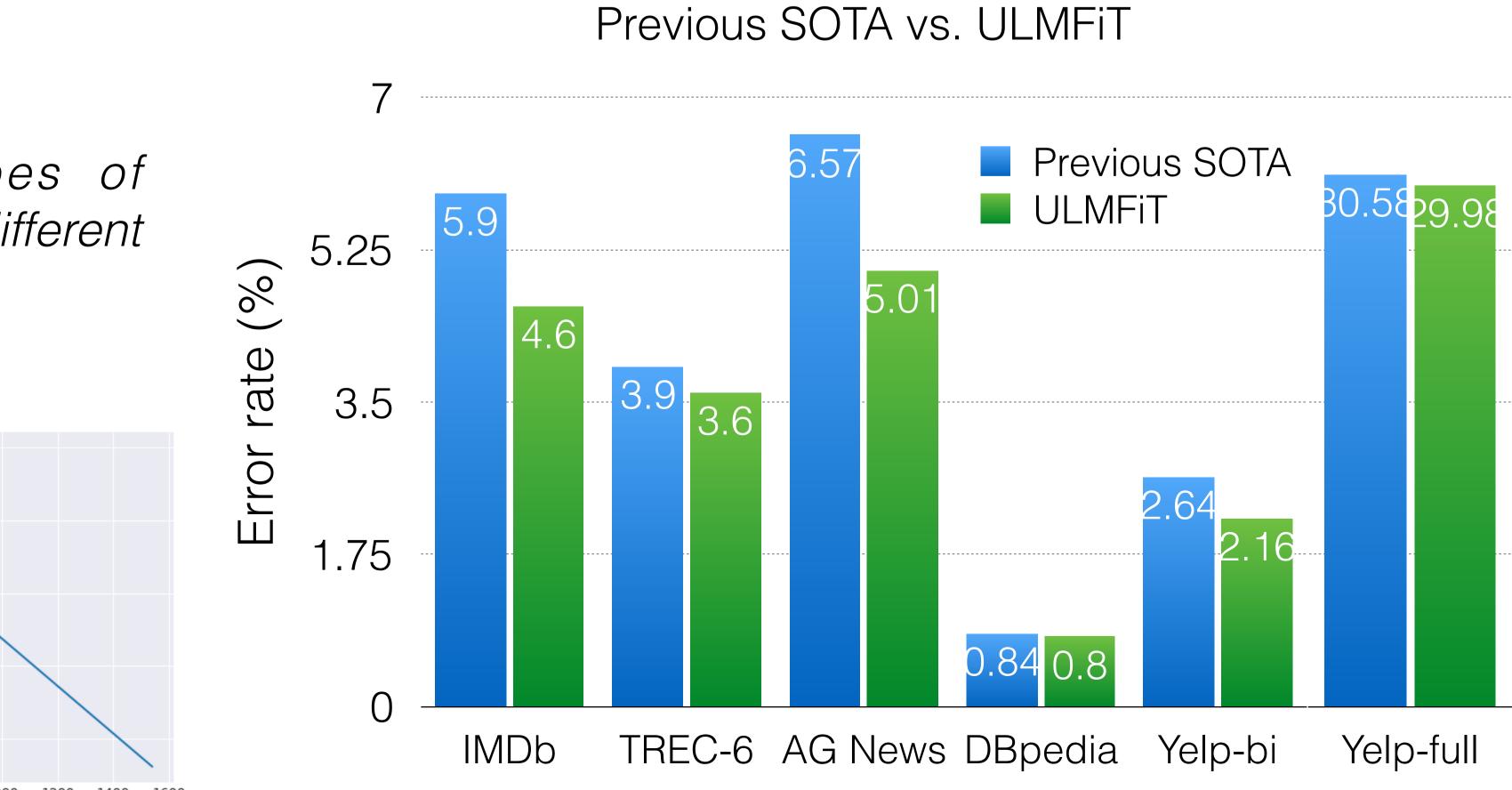
Gradually unfreeze the layers starting from the last layer to prevent catastrophic forgetting.

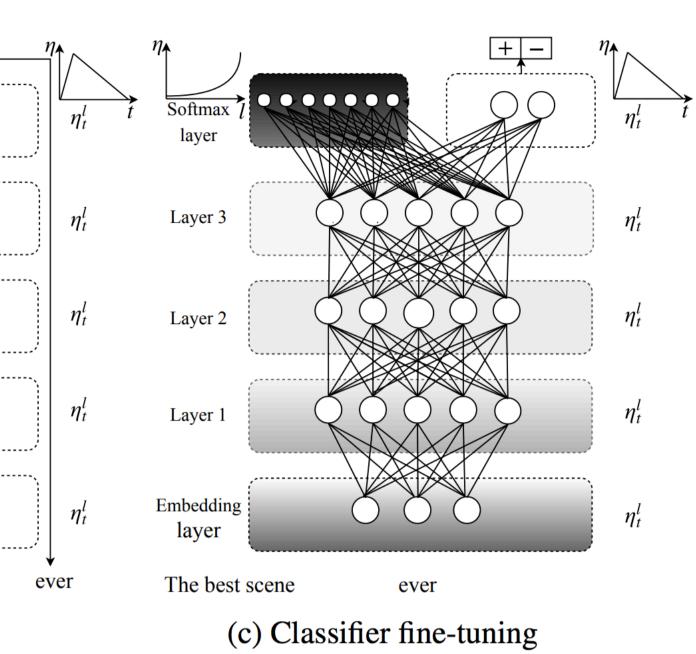
Bidirectional language model

Pretrain both forward and backward LMs and finetune them independently.

Experiments

Comparison against state-of-the-art (SOTA) on six widely studied text classification datasets.

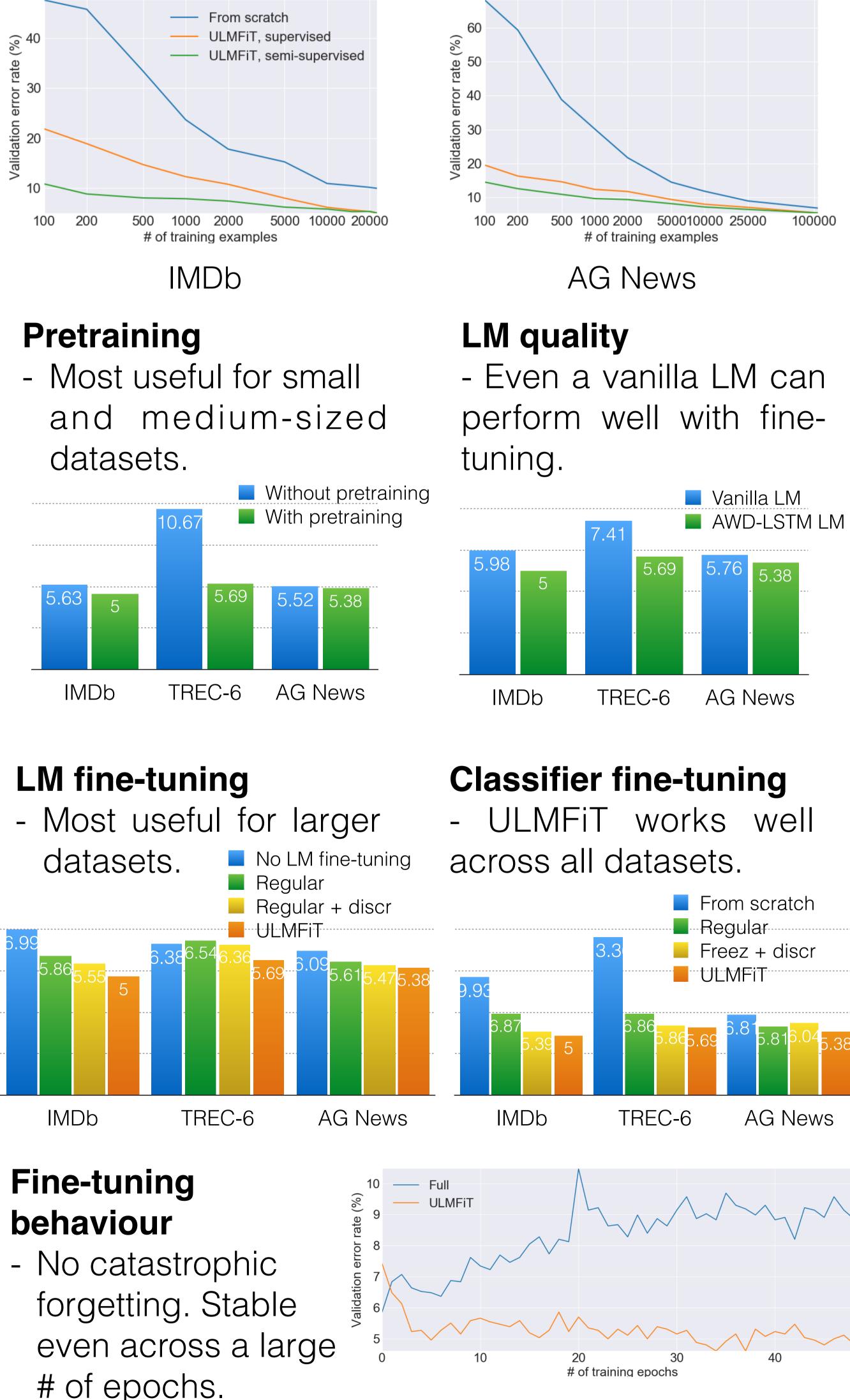


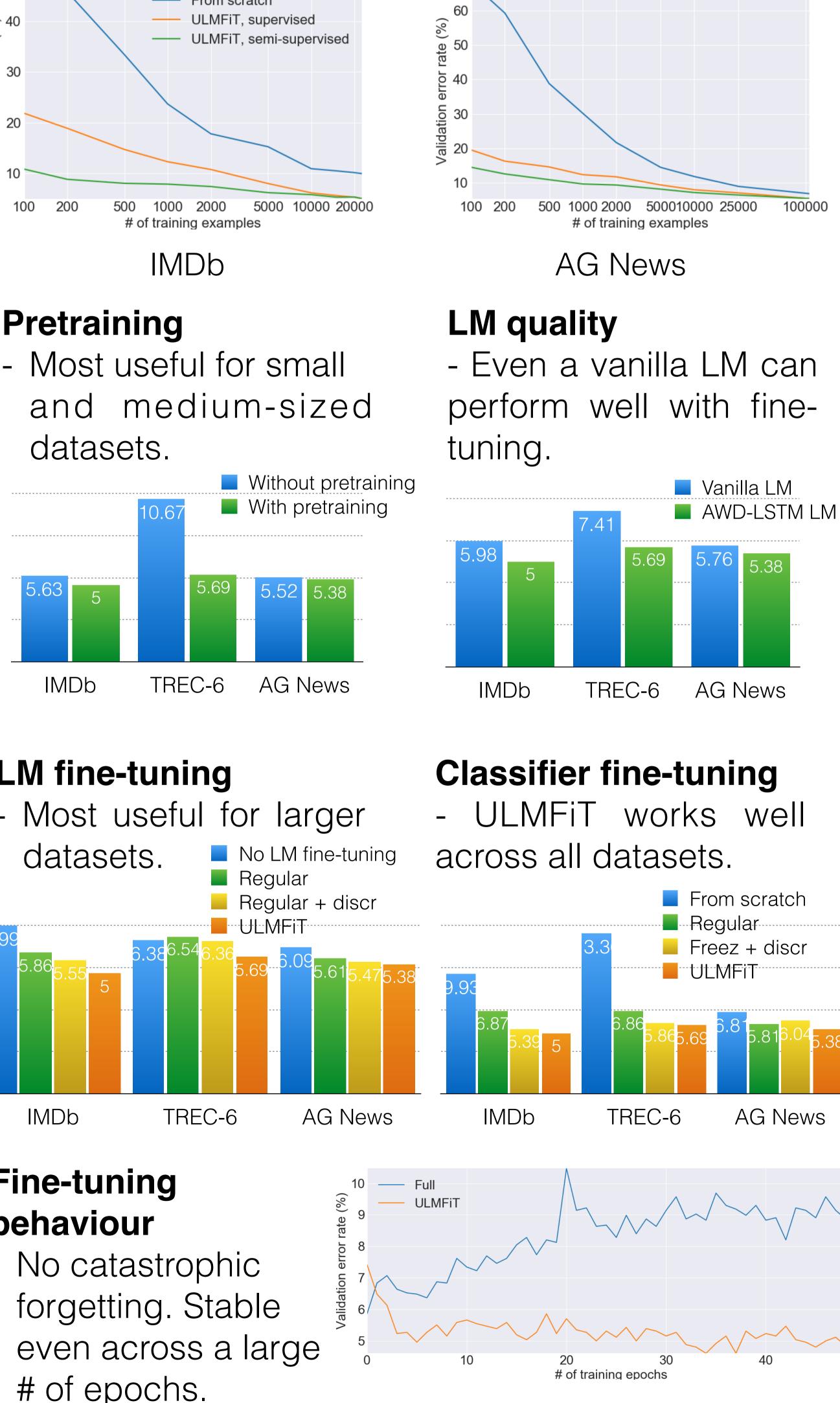


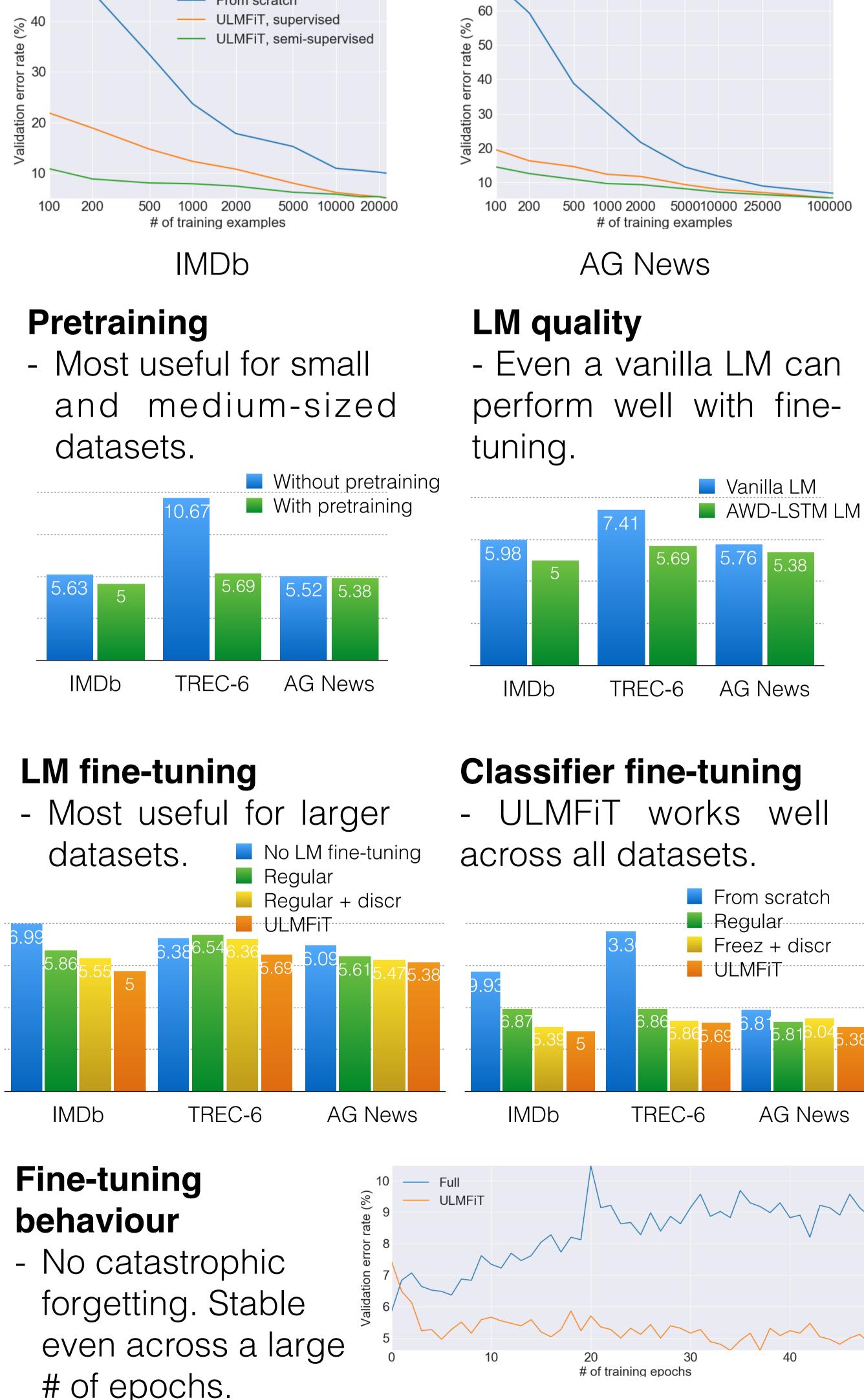
Analysis

Low-shot learning

- (on IMDb and AG News).







of epochs.

- 100 labeled examples: ULMFiT matches performance of training from scratch with 10x and 20x more data (on IMDb and AG News).

- 100 labeled examples + 50-100k unlabeled examples: ULMFiT matches performance of training from scratch with 50x and 100x more data

Models and code: http://nlp.fast.ai/ulmfit