
Sentence-State LSTM for Text Representation
Yue Zhang1, Qi Liu1 and Linfeng Song2

1Singapore University of Technology and Design, 2University of Rochester

Introduction
1. Bi-directional LSTM

... ...

... ...

... ...

2. Disadvantages:
1. BiLSTM is slow, due to its non-parallelism caused by its sequential nature

(Vaswani et al., 2017).
2. Lack of balance between local n-gram and global sequence information (Wang et

al., 2016).
3. Less effective in capturing long range dependencies (Koehn and Knowles, 2017).

Method

...

...

...

...

...

...

...

...
time

0 1 ... t-1

t

Word level nodes: Sentence level node:

den vector g. Here hi represents syntactic and se-
mantic features for wi under the sentential context,
while g represents features for the whole sentence.
Following previous work, we additionally add �s�
and �/s� to the two ends of the sentence as w0 and
wn+1, respectively.

3.1 Baseline BiLSTM
The baseline BiLSTM model consists of two
LSTM components, which process the input in
the forward left-to-right and the backward right-
to-left directions, respectively. In each direction,
the reading of input words is modelled as a recur-
rent process with a single hidden state. Given an
initial value, the state changes its value recurrently,
each time consuming an incoming word.

Take the forward LSTM component for exam-
ple. Denoting the initial state as

��
h 0, which is

a model parameter, the recurrent state transition
step for calculating

��
h 1, . . . ,

��
h n+1 is defined as

follows (Graves and Schmidhuber, 2005):

ît = �(Wixt + Ui
��
h t�1 + bi)

f̂ t = �(Wfxt + Uf
��
h t�1 + bf)

ot = �(Woxt + Uo
��
h t�1 + bo)

ut = tanh(Wuxt + Uu
��
h t�1 + bu)

it, f t = softmax (̂it, f̂ t)

ct = ct�1 � f t + ut � it

��
h t = ot � tanh(ct)

(1)

where xt denotes the word representation of wt;
it, ot, f t and ut represent the values of an input
gate, an output gate, a forget gate and an actual in-
put at time step t, respectively, which controls the
information flow for a recurrent cell ��c t and the
state vector

��
h t; Wx, Ux and bx (x � {i, o, f, u})

are model parameters. � is the sigmoid function.
The backward LSTM component follows the

same recurrent state transition process as de-
scribed in Eq 1. Starting from an initial state hn+1,
which is a model parameter, it reads the input xn,
xn�1, . . . , x0, changing its value to

��
h n,

��
h n�1,

. . . ,
��
h 0, respectively. A separate set of parame-

ters Ŵx, Ûx and b̂x (x � {i, o, f, u}) are used for
the backward component.

The BiLSTM model uses the concatenated
value of

��
h t and

��
h t as the hidden vector for wt:

ht = [
��
h t;

��
h t]

A single hidden vector representation g of the
whole input sentence can be obtained using the fi-
nal state values of the two LSTM components:

g = [
��
h n+1;

��
h 0]

Stacked BiLSTM Multiple layers of BiLTMs
can be stacked for increased representation power,
where the hidden vectors of a lower layer are used
as inputs for an upper layer. Different model pa-
rameters are used in each stacked BiLSTM layer.

3.2 Sentence-State LSTM
Formally, an S-LSTM state at time step t can be
denoted by:

Ht = �ht
0, h

t
1, . . . , h

t
n+1, g

t�,

which consists of a sub state ht
i for each word wi

and a sentence-level sub state gt.
S-LSTM uses a recurrent state transition pro-

cess to model information exchange between sub
states, which enriches state representations incre-
mentally. For the initial state H0, we set h0

i =
g0 = h0, where h0 is a parameter. The state
transition from Ht�1 to Ht consists of sub state
transitions from ht�1

i to ht
i and from gt�1 to gt.

We take an LSTM structure similar to the baseline
BiLSTM for modelling state transition, using a re-
current cell ct

i for each wi and a cell ct
g for g.

As shown in Figure 1, the value of each ht
i is

computed based on the values of xi, ht�1
i�1, ht�1

i ,
ht�1

i+1 and gt�1, together with their corresponding
cell values:

�t
i = [ht�1

i�1, h
t�1
i , ht�1

i+1]

ît
i = �(Wi�

t
i + Uixi + Vig

t�1 + bi)

l̂ti = �(Wl�
t
i + Ulxi + Vlg

t�1 + bl)

r̂t
i = �(Wr�

t
i + Urxi + Vrg

t�1 + br)

f̂ t
i = �(Wf�t

i + Ufxi + Vfgt�1 + bf)

ŝt
i = �(Ws�

t
i + Usxi + Vsg

t�1 + bs)

ot
i = �(Wo�

t
i + Uoxi + Vog

t�1 + bo)

ut
i = tanh(Wu�t

i + Uuxi + Vugt�1 + bu)

it
i, l

t
i, r

t
i , f

t
i , s

t
i = softmax (̂it

i, l̂
t
i, r̂

t
i , f̂

t
i , ŝ

t
i)

ct
i = lti � ct�1

i�1 + f t
i � ct�1

i + rt
i � ct�1

i+1

+ st
i � ct�1

g + it
i � ut

i

ht
i = oi

t � tanh(ct
i)

(2)

where �t
i is the concatenation of hidden vectors

of a context window, and lti, rt
i , f t

i , st
i and it

i are

gates that control information flow from �t
i and xi

to ct
i. In particular, it

i controls information from
the input xi; lti, rt

i , f t
i and st

i control information
from the left context cell ct�1

i�1, the right context
cell ct�1

i+1, ct�1
i and the sentence context cell ct�1

g ,
respectively. The values of it

i, lti, rt
i , f t

i and st
i are

normalised such that they sum to 1. ot
i is an out-

put gate from the cell state ct
i to the hidden state

ht
i. Wx, Ux, Vx and bx (x � {i, o, l, r, f, s, u})

are model parameters. � is the sigmoid function.
The value of gt is computed based on the values

of ht�1
i for all i � [0..n + 1]:

h̄ = avg(ht�1
0 , ht�1

1 , . . . , ht�1
n+1)

f̂ t
g = �(Wgg

t�1 + Ugh̄ + bg)

f̂ t
i = �(Wfgt�1 + Ufht�1

i + bf)

ot = �(Wog
t�1 + Uoh̄ + bo)

f t
0, . . . , f

t
n+1, f

t
g = softmax (f̂ t

0, . . . , f̂
t
n+1, f̂

t
g)

ct
g = f t

g � ct�1
g +

�

i

f t
i � ct�1

i

gt = ot � tanh(ct
g)

(3)
where f t

0, . . . , f
t
n+1 and f t

g are gates controlling
information from ct�1

0 , . . . , ct�1
n+1 and ct�1

g , re-
spectively, which are normalised. ot is an output
gate from the recurrent cell ct

g to gt. Wx, Ux and
bx (x � {g, f, o}) are model parameters.

Contrast with BiLSTM The difference be-
tween S-LSTM and BiLSTM can be understood
with respect to their recurrent states. While BiL-
STM uses only one state in each direction to rep-
resent the subsequence from the beginning to a
certain word, S-LSTM uses a structural state to
represent the full sentence, which consists of a
sentence-level sub state and n + 2 word-level sub
states, simultaneously. Different from BiLSTMs,
for which ht at different time steps are used to rep-
resent w0, . . . , wn+1, respectively, the word-level
states ht

i and sentence-level state gt of S-LSTMs
directly correspond to the goal outputs hi and g,
as introduced in the beginning of this section. As
t increases from 0, ht

i and gt are enriched with
increasingly deeper context information.

From the perspective of information flow, BiL-
STM passes information from one end of the sen-
tence to the other. As a result, the number of time
steps scales with the size of the input. In con-
trast, S-LSTM allows bi-directional information
flow at each word simultaneously, and additionally

between the sentence-level state and every word-
level state. At each step, each hi captures an in-
creasing larger ngram context, while additionally
communicating globally to all other hj via g. The
optimal number of recurrent steps is decided by
the end-task performance, and does not necessar-
ily scale with the sentence size. As a result, S-
LSTM can potentially be both more efficient and
more accurate compared with BiLSTMs.

Increasing window size. By default S-LSTM
exchanges information only between neighbour-
ing words, which can be seen as adopting a 1-
word window on each side. The window size
can be extended to 2, 3 or more words in order
to allow more communication in a state transi-
tion, expediting information exchange. To this
end, we modify Eq 2, integrating additional con-
text words to �t

i , with extended gates and cells.
For example, with a window size of 2, �t

i =
[ht�1

i�2, h
t�1
i�1, h

t�1
i , ht�1

i+1, h
t�1
i+2]. We study the ef-

fectiveness of window size in our experiments.
Additional sentence-level nodes. By default

S-LSTM uses one sentence-level node. One way
of enriching the parameter space is to add more
sentence-level nodes, each communicating with
word-level nodes in the same way as described
by Eq 3. In addition, different sentence-level
nodes can communicate with each other during
state transition. When one sentence-level node is
used for classification outputs, the other sentence-
level node can serve as hidden memory units, or
latent features. We study the effectiveness of mul-
tiple sentence-level nodes empirically.

3.3 Task settings
We consider two task settings, namely classifica-
tion and sequence labelling. For classification, g
is fed to a softmax classification layer:

y = softmax (Wcg + bc)

where y is the probability distribution of output
class labels and Wc and bc are model parameters.
For sequence labelling, each hi can be used as fea-
ture representation for a corresponding word wi.

External attention It has been shown that
summation of hidden states using attention (Bah-
danau et al., 2015; Yang et al., 2016) give bet-
ter accuracies compared to using the end states
of BiLSTMs. We study the influence of atten-
tion on both S-LSTM and BiLSTM for classifi-
cation. In particular, additive attention (Bahdanau

Tasks
1. Classification (vanilla attention):

gates that control information flow from �t
i and xi

to ct
i. In particular, it

i controls information from
the input xi; lti, rt

i , f t
i and st

i control information
from the left context cell ct�1

i�1, the right context
cell ct�1

i+1, ct�1
i and the sentence context cell ct�1

g ,
respectively. The values of it

i, lti, rt
i , f t

i and st
i are

normalised such that they sum to 1. ot
i is an out-

put gate from the cell state ct
i to the hidden state

ht
i. Wx, Ux, Vx and bx (x � {i, o, l, r, f, s, u})

are model parameters. � is the sigmoid function.
The value of gt is computed based on the values

of ht�1
i for all i � [0..n + 1]:

h̄ = avg(ht�1
0 , ht�1

1 , . . . , ht�1
n+1)

f̂ t
g = �(Wgg

t�1 + Ugh̄ + bg)

f̂ t
i = �(Wfgt�1 + Ufht�1

i + bf)

ot = �(Wog
t�1 + Uoh̄ + bo)

f t
0, . . . , f

t
n+1, f

t
g = softmax (f̂ t

0, . . . , f̂
t
n+1, f̂

t
g)

ct
g = f t

g � ct�1
g +

�

i

f t
i � ct�1

i

gt = ot � tanh(ct
g)

(3)
where f t

0, . . . , f
t
n+1 and f t

g are gates controlling
information from ct�1

0 , . . . , ct�1
n+1 and ct�1

g , re-
spectively, which are normalised. ot is an output
gate from the recurrent cell ct

g to gt. Wx, Ux and
bx (x � {g, f, o}) are model parameters.

Contrast with BiLSTM The difference be-
tween S-LSTM and BiLSTM can be understood
with respect to their recurrent states. While BiL-
STM uses only one state in each direction to rep-
resent the subsequence from the beginning to a
certain word, S-LSTM uses a structural state to
represent the full sentence, which consists of a
sentence-level sub state and n + 2 word-level sub
states, simultaneously. Different from BiLSTMs,
for which ht at different time steps are used to rep-
resent w0, . . . , wn+1, respectively, the word-level
states ht

i and sentence-level state gt of S-LSTMs
directly correspond to the goal outputs hi and g,
as introduced in the beginning of this section. As
t increases from 0, ht

i and gt are enriched with
increasingly deeper context information.

From the perspective of information flow, BiL-
STM passes information from one end of the sen-
tence to the other. As a result, the number of time
steps scales with the size of the input. In con-
trast, S-LSTM allows bi-directional information
flow at each word simultaneously, and additionally

between the sentence-level state and every word-
level state. At each step, each hi captures an in-
creasing larger ngram context, while additionally
communicating globally to all other hj via g. The
optimal number of recurrent steps is decided by
the end-task performance, and does not necessar-
ily scale with the sentence size. As a result, S-
LSTM can potentially be both more efficient and
more accurate compared with BiLSTMs.

Increasing window size. By default S-LSTM
exchanges information only between neighbour-
ing words, which can be seen as adopting a 1-
word window on each side. The window size
can be extended to 2, 3 or more words in order
to allow more communication in a state transi-
tion, expediting information exchange. To this
end, we modify Eq 2, integrating additional con-
text words to �t

i , with extended gates and cells.
For example, with a window size of 2, �t

i =
[ht�1

i�2, h
t�1
i�1, h

t�1
i , ht�1

i+1, h
t�1
i+2]. We study the ef-

fectiveness of window size in our experiments.
Additional sentence-level nodes. By default

S-LSTM uses one sentence-level node. One way
of enriching the parameter space is to add more
sentence-level nodes, each communicating with
word-level nodes in the same way as described
by Eq 3. In addition, different sentence-level
nodes can communicate with each other during
state transition. When one sentence-level node is
used for classification outputs, the other sentence-
level node can serve as hidden memory units, or
latent features. We study the effectiveness of mul-
tiple sentence-level nodes empirically.

3.3 Task settings
We consider two task settings, namely classifica-
tion and sequence labelling. For classification, g
is fed to a softmax classification layer:

y = softmax (Wcg + bc)

where y is the probability distribution of output
class labels and Wc and bc are model parameters.
For sequence labelling, each hi can be used as fea-
ture representation for a corresponding word wi.

External attention It has been shown that
summation of hidden states using attention (Bah-
danau et al., 2015; Yang et al., 2016) give bet-
ter accuracies compared to using the end states
of BiLSTMs. We study the influence of atten-
tion on both S-LSTM and BiLSTM for classifi-
cation. In particular, additive attention (Bahdanau

Dataset Training Development Test
#sent #words #sent #words #sent #words

Movie review (Pang and Lee, 2008) 8527 201137 1066 25026 1066 25260
Books 1400 297K 200 59K 400 68K

Electronics 1398 924K 200 184K 400 224K
DVD 1400 1,587K 200 317K 400 404K

Kitchen 1400 769K 200 153K 400 195K
Apparel 1400 525K 200 105K 400 128K
Camera 1397 1,084K 200 216K 400 260K

Text Health 1400 742K 200 148K 400 175K
Classification Music 1400 1,176K 200 235K 400 276K

(Liu et al., 2017) Toys 1400 792K 200 158K 400 196K
Video 1400 1,311K 200 262K 400 342K
Baby 1300 855K 200 171K 400 221K

Magazines 1370 1,033K 200 206K 400 264K
Software 1315 1,143K 200 228K 400 271K

Sports 1400 833K 200 183K 400 218K
IMDB 1400 2,205K 200 507K 400 475K

MR 1400 196K 200 41K 400 48K
POS tagging (Marcus et al., 1993) 39831 950011 1699 40068 2415 56671

NER (Sang et al., 2003) 14987 204567 3466 51578 3684 46666

Table 1: Dataset statistics

et al., 2015) is applied to the hidden states of input
words for both BiLSTMs and S-LSTMs calculat-
ing a weighted sum

g =
�

t

�tht

where

�t =
exp uT �t�
i exp uT �i

�t = tanh(W�ht + b�)

Here W�, u and b� are model parameters.

External CRF For sequential labelling, we
use a CRF layer on top of the hidden vec-
tors h1, h2, . . . , hn for calculating the conditional
probabilities of label sequences (Huang et al.,
2015; Ma and Hovy, 2016):

P (Y n
1 |h, Ws, bs) =

�n
i=1 �i(yi�1, yi, h)�

Y n�
1

�n
i=1 �i(y�

i�1, y
�
i, h)

�i(yi�1, yi, h) = exp(W
yi�1,yi
s hi + b

yi�1,yi
s)

where W
yi�1,yi
s and b

yi�1,yi
s are parameters spe-

cific to two consecutive labels yi�1 and yi.
For training, standard log-likelihood loss is used

with L2 regularization given a set of gold-standard
instances.

4 Experiments

We empirically compare S-LSTMs and BiLSTMs
on different classification and sequence labelling
tasks. All experiments are conducted using a
GeForce GTX 1080 GPU with 8GB memory.

Model Time (s) Acc # Param
+0 dummy node 56 81.76 7,216K
+1 dummy node 65 82.64 8,768K
+2 dummy node 76 82.24 10,321K
Hidden size 100 42 81.75 4,891K
Hidden size 200 54 82.04 6,002K
Hidden size 300 65 82.64 8,768K
Hidden size 600 175 81.84 17,648K
Hidden size 900 235 81.66 33,942K
Without �s�, �/s� 63 82.36 8,768K

With �s�, �/s� 65 82.64 8,768K

Table 2: Movie review DEV results of S-LSTM

4.1 Experimental Settings
Datasets. We choose the movie review dataset
of Pang and Lee (2008), and additionally the
16 datasets of Liu et al. (2017) for classification
evaluation. We randomly split the movie review
dataset into training (80%), development (10%)
and test (10%) sections, and the original split of
Liu et al. (2017) for the 16 classification datasets.

For sequence labelling, we choose the Penn
Treebank (Marcus et al., 1993) POS tagging task
and the CoNLL (Sang et al., 2003) NER task as
our benchmarks. For POS tagging, we follow the
standard split (Manning, 2011), using sections 0 –
18 for training, 19 – 21 for development and 22
– 24 for test. For NER, we follow the standard
split, and use the BIOES tagging scheme (Ratinov
and Roth, 2009). Statistics of the four datasets are
shown in Table 1.

Hyperparameters. We initialise word embed-
dings using GloVe (Pennington et al., 2014) 300
dimensional embeddings.1 Embeddings are fine-
tuned during model training for all tasks. Dropout
(Srivastava et al., 2014) is applied to embedding
hidden states, with a rate of 0.5. All models are
optimised using the Adam optimizer (Kingma and
Ba, 2014), with an initial learning rate of 0.001
and a decay rate of 0.97. Gradients are clipped
at 3 and a batch size of 10 is adopted. Sentences
with similar lengths are batched together. The L2
regularization parameter is set to 0.001.

4.2 Development Experiments
We use the movie review development data to in-
vestigate different configurations of S-LSTMs and
BiLSTMs. For S-LSTMs, the default configura-
tion uses �s� and �/s� words for augmenting words

1https://nlp.stanford.edu/projects/glove/

2. Sequence Labeling (vanilla CRF):

gates that control information flow from �t
i and xi

to ct
i. In particular, it

i controls information from
the input xi; lti, rt

i , f t
i and st

i control information
from the left context cell ct�1

i�1, the right context
cell ct�1

i+1, ct�1
i and the sentence context cell ct�1

g ,
respectively. The values of it

i, lti, rt
i , f t

i and st
i are

normalised such that they sum to 1. ot
i is an out-

put gate from the cell state ct
i to the hidden state

ht
i. Wx, Ux, Vx and bx (x � {i, o, l, r, f, s, u})

are model parameters. � is the sigmoid function.
The value of gt is computed based on the values

of ht�1
i for all i � [0..n + 1]:

h̄ = avg(ht�1
0 , ht�1

1 , . . . , ht�1
n+1)

f̂ t
g = �(Wgg

t�1 + Ugh̄ + bg)

f̂ t
i = �(Wfgt�1 + Ufht�1

i + bf)

ot = �(Wog
t�1 + Uoh̄ + bo)

f t
0, . . . , f

t
n+1, f

t
g = softmax (f̂ t

0, . . . , f̂
t
n+1, f̂

t
g)

ct
g = f t

g � ct�1
g +

�

i

f t
i � ct�1

i

gt = ot � tanh(ct
g)

(3)
where f t

0, . . . , f
t
n+1 and f t

g are gates controlling
information from ct�1

0 , . . . , ct�1
n+1 and ct�1

g , re-
spectively, which are normalised. ot is an output
gate from the recurrent cell ct

g to gt. Wx, Ux and
bx (x � {g, f, o}) are model parameters.

Contrast with BiLSTM The difference be-
tween S-LSTM and BiLSTM can be understood
with respect to their recurrent states. While BiL-
STM uses only one state in each direction to rep-
resent the subsequence from the beginning to a
certain word, S-LSTM uses a structural state to
represent the full sentence, which consists of a
sentence-level sub state and n + 2 word-level sub
states, simultaneously. Different from BiLSTMs,
for which ht at different time steps are used to rep-
resent w0, . . . , wn+1, respectively, the word-level
states ht

i and sentence-level state gt of S-LSTMs
directly correspond to the goal outputs hi and g,
as introduced in the beginning of this section. As
t increases from 0, ht

i and gt are enriched with
increasingly deeper context information.

From the perspective of information flow, BiL-
STM passes information from one end of the sen-
tence to the other. As a result, the number of time
steps scales with the size of the input. In con-
trast, S-LSTM allows bi-directional information
flow at each word simultaneously, and additionally

between the sentence-level state and every word-
level state. At each step, each hi captures an in-
creasing larger ngram context, while additionally
communicating globally to all other hj via g. The
optimal number of recurrent steps is decided by
the end-task performance, and does not necessar-
ily scale with the sentence size. As a result, S-
LSTM can potentially be both more efficient and
more accurate compared with BiLSTMs.

Increasing window size. By default S-LSTM
exchanges information only between neighbour-
ing words, which can be seen as adopting a 1-
word window on each side. The window size
can be extended to 2, 3 or more words in order
to allow more communication in a state transi-
tion, expediting information exchange. To this
end, we modify Eq 2, integrating additional con-
text words to �t

i , with extended gates and cells.
For example, with a window size of 2, �t

i =
[ht�1

i�2, h
t�1
i�1, h

t�1
i , ht�1

i+1, h
t�1
i+2]. We study the ef-

fectiveness of window size in our experiments.
Additional sentence-level nodes. By default

S-LSTM uses one sentence-level node. One way
of enriching the parameter space is to add more
sentence-level nodes, each communicating with
word-level nodes in the same way as described
by Eq 3. In addition, different sentence-level
nodes can communicate with each other during
state transition. When one sentence-level node is
used for classification outputs, the other sentence-
level node can serve as hidden memory units, or
latent features. We study the effectiveness of mul-
tiple sentence-level nodes empirically.

3.3 Task settings
We consider two task settings, namely classifica-
tion and sequence labelling. For classification, g
is fed to a softmax classification layer:

y = softmax (Wcg + bc)

where y is the probability distribution of output
class labels and Wc and bc are model parameters.
For sequence labelling, each hi can be used as fea-
ture representation for a corresponding word wi.

External attention It has been shown that
summation of hidden states using attention (Bah-
danau et al., 2015; Yang et al., 2016) give bet-
ter accuracies compared to using the end states
of BiLSTMs. We study the influence of atten-
tion on both S-LSTM and BiLSTM for classifi-
cation. In particular, additive attention (Bahdanau

Dataset Training Development Test
#sent #words #sent #words #sent #words

Movie review (Pang and Lee, 2008) 8527 201137 1066 25026 1066 25260
Books 1400 297K 200 59K 400 68K

Electronics 1398 924K 200 184K 400 224K
DVD 1400 1,587K 200 317K 400 404K

Kitchen 1400 769K 200 153K 400 195K
Apparel 1400 525K 200 105K 400 128K
Camera 1397 1,084K 200 216K 400 260K

Text Health 1400 742K 200 148K 400 175K
Classification Music 1400 1,176K 200 235K 400 276K

(Liu et al., 2017) Toys 1400 792K 200 158K 400 196K
Video 1400 1,311K 200 262K 400 342K
Baby 1300 855K 200 171K 400 221K

Magazines 1370 1,033K 200 206K 400 264K
Software 1315 1,143K 200 228K 400 271K

Sports 1400 833K 200 183K 400 218K
IMDB 1400 2,205K 200 507K 400 475K

MR 1400 196K 200 41K 400 48K
POS tagging (Marcus et al., 1993) 39831 950011 1699 40068 2415 56671

NER (Sang et al., 2003) 14987 204567 3466 51578 3684 46666

Table 1: Dataset statistics

et al., 2015) is applied to the hidden states of input
words for both BiLSTMs and S-LSTMs calculat-
ing a weighted sum

g =
�

t

�tht

where

�t =
exp uT �t�
i exp uT �i

�t = tanh(W�ht + b�)

Here W�, u and b� are model parameters.

External CRF For sequential labelling, we
use a CRF layer on top of the hidden vec-
tors h1, h2, . . . , hn for calculating the conditional
probabilities of label sequences (Huang et al.,
2015; Ma and Hovy, 2016):

P (Y n
1 |h, Ws, bs) =

�n
i=1 �i(yi�1, yi, h)�

Y n�
1

�n
i=1 �i(y�

i�1, y
�
i, h)

�i(yi�1, yi, h) = exp(W
yi�1,yi
s hi + b

yi�1,yi
s)

where W
yi�1,yi
s and b

yi�1,yi
s are parameters spe-

cific to two consecutive labels yi�1 and yi.
For training, standard log-likelihood loss is used

with L2 regularization given a set of gold-standard
instances.

4 Experiments

We empirically compare S-LSTMs and BiLSTMs
on different classification and sequence labelling
tasks. All experiments are conducted using a
GeForce GTX 1080 GPU with 8GB memory.

Model Time (s) Acc # Param
+0 dummy node 56 81.76 7,216K
+1 dummy node 65 82.64 8,768K
+2 dummy node 76 82.24 10,321K
Hidden size 100 42 81.75 4,891K
Hidden size 200 54 82.04 6,002K
Hidden size 300 65 82.64 8,768K
Hidden size 600 175 81.84 17,648K
Hidden size 900 235 81.66 33,942K
Without �s�, �/s� 63 82.36 8,768K

With �s�, �/s� 65 82.64 8,768K

Table 2: Movie review DEV results of S-LSTM

4.1 Experimental Settings
Datasets. We choose the movie review dataset
of Pang and Lee (2008), and additionally the
16 datasets of Liu et al. (2017) for classification
evaluation. We randomly split the movie review
dataset into training (80%), development (10%)
and test (10%) sections, and the original split of
Liu et al. (2017) for the 16 classification datasets.

For sequence labelling, we choose the Penn
Treebank (Marcus et al., 1993) POS tagging task
and the CoNLL (Sang et al., 2003) NER task as
our benchmarks. For POS tagging, we follow the
standard split (Manning, 2011), using sections 0 –
18 for training, 19 – 21 for development and 22
– 24 for test. For NER, we follow the standard
split, and use the BIOES tagging scheme (Ratinov
and Roth, 2009). Statistics of the four datasets are
shown in Table 1.

Hyperparameters. We initialise word embed-
dings using GloVe (Pennington et al., 2014) 300
dimensional embeddings.1 Embeddings are fine-
tuned during model training for all tasks. Dropout
(Srivastava et al., 2014) is applied to embedding
hidden states, with a rate of 0.5. All models are
optimised using the Adam optimizer (Kingma and
Ba, 2014), with an initial learning rate of 0.001
and a decay rate of 0.97. Gradients are clipped
at 3 and a batch size of 10 is adopted. Sentences
with similar lengths are batched together. The L2
regularization parameter is set to 0.001.

4.2 Development Experiments
We use the movie review development data to in-
vestigate different configurations of S-LSTMs and
BiLSTMs. For S-LSTMs, the default configura-
tion uses �s� and �/s� words for augmenting words

1https://nlp.stanford.edu/projects/glove/

Contrast with existing work

Model Simultaneous N-gram Global Recurrent

Bi-LSTM ⇥ ⇥ sequential
p

CNN
p p

pooling ⇥

SAN
p

⇥ attention ⇥

S-LSTM
p p

gates
p

Experiments
1. Data

1) Classification:
Movie review (Pang and Lee (2008)), 16 datasets (Liu et al. (2017))

2) Sequence Labeling
NER: CoNLL (Sang et al., 2003)
POS tagging: PTB (Marcus et al., 1993)

2. Development

Model Time (s) Acc # Param
LSTM 67 80.72 5,977K

BiLSTM 106 81.73 7,059K
2 stacked BiLSTM 207 81.97 9,221K
3 stacked BiLSTM 310 81.53 11,383K
4 stacked BiLSTM 411 81.37 13,546K

S-LSTM 65 82.64* 8,768K
CNN 34 80.35 5,637K

2 stacked CNN 40 80.97 5,717K
3 stacked CNN 47 81.46 5,808K
4 stacked CNN 51 81.39 5,855K

Transformer (N=6) 138 81.03 7,234K
Transformer (N=8) 174 81.86 7,615K

Transformer (N=10) 214 81.63 8,004K
BiLSTM+Attention 126 82.37 7,419K
S-LSTM+Attention 87 83.07* 8,858K Iteration number

3. Classification

Model Accuracy Train (s) Test (s)
Socher et al. (2011) 77.70 – –
Socher et al. (2012) 79.00 – –

Kim (2014) 81.50 – –
Qian et al. (2016) 81.50 – –

BiLSTM 81.61 51 1.62
2 stacked BiLSTM 81.94 98 3.18
3 stacked BiLSTM 81.71 137 4.67

3 stacked CNN 81.59 31 1.04
Transformer (N=8) 81.97 89 2.75

S-LSTM 82.45* 41 1.53

Dataset SLSTM Time (s) BiLSTM Time (s) 2 BiLSTM Time (s)
Camera 90.02* 50 (2.85) 87.05 115 (8.37) 88.07 221 (16.1)
Video 86.75* 55 (3.95) 84.73 140 (12.59) 85.23 268 (25.86)
Health 86.5 37 (2.17) 85.52 118 (6.38) 85.89 227 (11.16)
Music 82.04* 52 (3.44) 78.74 185 (12.27) 80.45 268 (23.46)

Kitchen 84.54* 40 (2.50) 82.22 118 (10.18) 83.77 225 (19.77)
DVD 85.52* 63 (5.29) 83.71 166 (15.42) 84.77 217 (28.31)
Toys 85.25 39 (2.42) 85.72 119 (7.58) 85.82 231 (14.83)
Baby 86.25* 40 (2.63) 84.51 125 (8.50) 85.45 238 (17.73)
Books 83.44* 64 (3.64) 82.12 240 (13.59) 82.77 458 (28.82)
IMDB 87.15* 67 (3.69) 86.02 248 (13.33) 86.55 486 (26.22)

MR 76.2 27 (1.25) 75.73 39 (2.27) 75.98 72 (4.63)
Appeal 85.75 35 (2.83) 86.05 119 (11.98) 86.35* 229 (22.76)

Magazines 93.75* 51 (2.93) 92.52 214 (11.06) 92.89 417 (22.77)
Electronics 83.25* 47 (2.55) 82.51 195 (10.14) 82.33 356 (19.77)

Sports 85.75* 44 (2.64) 84.04 172 (8.64) 84.78 328 (16.34)
Software 87.75* 54 (2.98) 86.73 245 (12.38) 86.97 459 (24.68)
Average 85.38* 47.30 (2.98) 84.01 153.48 (10.29) 84.64 282.24 (20.2)

Table 5: Results on the 16 datasets of Liu et al. (2017). Time format: train (test)

Model Accuracy Train (s) Test (s)
Manning (2011) 97.28 – –
Collobert et al. (2011) 97.29 – –
Sun (2014) 97.36 – –
Søgaard (2011) 97.50 – –
Huang et al. (2015) 97.55 – –
Ma and Hovy (2016) 97.55 – –
Yang et al. (2017) 97.55 – –
BiLSTM 97.35 254 22.50
2 stacked BiLSTM 97.41 501 43.99
3 stacked BiLSTM 97.40 746 64.96
S-LSTM 97.55 237 22.16

Table 6: Results on PTB (POS tagging)

the number of recurrent steps on the respective de-
velopment sets for sequence labelling. The POS
accuracies and NER F1-scores against the number
of recurrent steps are shown in Figure 3 (a) and
(b), respectively. For POS tagging, the best step
number is set to 7, with a development accuracy
of 97.58%. For NER, the step number is set to 9,
with a development F1-score of 94.98%.

As can be seen in Table 6, S-LSTM gives signif-
icantly better results compared with BiLSTM on
the WSJ dataset. It also gives competitive accu-
racies as compared with existing methods in the
literature. Stacking two layers of BiLSTMs leads
to improved results compared to one-layer BiL-
STM, but the accuracy does not further improve

Model F1 Train (s) Test (s)
Collobert et al. (2011) 89.59 – –
Passos et al. (2014) 90.90 – –
Luo et al. (2015) 91.20 – –
Huang et al. (2015) 90.10 – –
Lample et al. (2016) 90.94 – –
Ma and Hovy (2016) 91.21 – –
Yang et al. (2017) 91.26 – –
Rei (2017) 86.26 – –
Peters et al. (2017) 91.93 – –
BiLSTM 90.96 82 9.89
2 stacked BiLSTM 91.02 159 18.88
3 stacked BiLSTM 91.06 235 30.97
S-LSTM 91.57* 79 9.78

Table 7: Results on CoNLL03 (NER)

with three layers of stacked LSTMs.
For NER (Table 7), S-LSTM gives an F1-score

of 91.57% on the CoNLL test set, which is sig-
nificantly better compared with BiLSTMs. Stack-
ing more layers of BiLSTMs leads to slightly bet-
ter F1-scores compared with a single-layer BiL-
STM. Our BiLSTM results are comparable to the
results reported by Ma and Hovy (2016) and Lam-
ple et al. (2016), who also use bidirectional RNN-
CRF structures. In contrast, S-LSTM gives the
best reported results under the same settings.

In the second section of Table 7, Yang et al.
(2017) use cross-domain data, obtaining an F-
score of 91.26%; Rei (2017) perform multi-task

Movie review 16 sets for classification

4. Sequential labeling

Model F1 Train (s) Test (s)
Collobert et al. (2011) 89.59 – –
Passos et al. (2014) 90.90 – –
Luo et al. (2015) 91.20 – –
Huang et al. (2015) 90.10 – –
Lample et al. (2016) 90.94 – –
Ma and Hovy (2016) 91.21 – –
Yang et al. (2017) 91.26 – –
Rei (2017) 86.26 – –
Peters et al. (2017) 91.93 – –
BiLSTM 90.96 82 9.89
2 stacked BiLSTM 91.02 159 18.88
3 stacked BiLSTM 91.06 235 30.97
S-LSTM 91.57* 79 9.78

Model Accuracy Train (s) Test (s)
Manning (2011) 97.28 – –
Collobert et al. (2011) 97.29 – –
Sun (2014) 97.36 – –
søgaard (2011) 97.50 – –
Huang et al. (2015) 97.55 – –
Ma and Hovy (2016) 97.55 – –
Yang et al. (2017) 97.55 – –
BiLSTM 97.35 254 22.50
2 stacked BiLSTM 97.41 501 43.99
3 stacked BiLSTM 97.40 746 64.96
S-LSTM 97.55 237 22.16

Named entity recognition POS tagging

5. Contrast with Bi-LSTM

Classification Sequence labeling Classification

References
1. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In NIPS. pages 6000-6010.
2. Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016. Combination of convolutional and recurrent neural network for
sentiment analysis of short texts. In Proceedings of COLING 2016. pages 2428-2437.
3. Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation. In Proceedings of the First
Workshop on Neural Machine Translation. Vancouver, pages 28-39.
4. Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis.Foundations and Trends in Information Re-
trieval 2(1-2):1-135.
5. Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial multi-task learning for text classification. In Pro-
ceedings of ACL 2017. Vancouver, Canada, pages 1-10.
6. Tjong Kim Sang, Erik F, and De Meulder Fien. 2003. Introduction to the conll2003 shared task: Languageindependent
named entity recognition. In Proceedings of HLTNAACL 2003-Volume 4. pages 142147.
7. Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of
english: The penn treebank. Computational linguistics 19(2):313330.

