Sentence-State LSTM for Text Representation

Yue Zhang¹, Qi Liu¹ and Linfeng Song²

¹Singapore University of Technology and Design, ²University of Rochester

Introduction

2. Disadvantages:

- 1. BiLSTM is slow, due to its non-parallelism caused by its sequential nature (Vaswani et al., 2017).
- 2. Lack of balance between local n-gram and global sequence information (Wang et al., 2016).
- 3. Less effective in capturing long range dependencies (Koehn and Knowles, 2017).

Method

Tasks

2

1. Classification (vanilla attention):

$$oldsymbol{y} = softmax(oldsymbol{W}_coldsymbol{g} + oldsymbol{b}_c)$$

$$\boldsymbol{g} = \sum \alpha_t \boldsymbol{h}_t$$

. Sequence Labeling (vanilla CRF):
$$m{y}_i = softmax(m{W}_sm{h}_i + m{b}_s)$$

$$P(\mathbf{Y}_{1}^{n}|\mathbf{h}, \mathbf{W}_{s}, \mathbf{b}_{s}) = \frac{\prod_{i=1}^{n} \psi_{i}(y_{i-1}, y_{i}, \mathbf{h})}{\sum_{\mathbf{Y}_{1}^{n'}} \prod_{i=1}^{n} \psi_{i}(y_{i-1}', y_{i}', \mathbf{h})}$$

$$\psi_i(y_{i-1}, y_i, \mathbf{h}) = exp(\mathbf{W}_s^{y_{i-1}, y_i} h_i + b_s^{y_{i-1}, y_i})$$

Contrast with existing work

Model	Simultaneous	N-gram	Global	Recurrent
Bi-LSTM	×	×	sequential	\checkmark
CNN	\checkmark	\checkmark	pooling	×
SAN	\checkmark	×	attention	×
S-LSTM	\checkmark	\checkmark	gates	\checkmark

Experiments

1. Data

- 1) Classification: Movie review (Pang and Lee (2008)), 16 datasets (Liu et al. (2017))
- 2) Sequence Labeling
 - NER: CoNLL (Sang et al., 2003)
- POS tagging: PTB (Marcus et al., 1993)

2. Development

Model	Time (s)	Acc	# Param
LSTM	67	80.72	5,977K
BiLSTM	106	81.73	7,059K
2 stacked BiLSTM	207	81.97	9,221K
3 stacked BiLSTM	310	81.53	11,383K
4 stacked BiLSTM	411	81.37	13,546K
S-LSTM	65	82.64*	8,768K
CNN	34	80.35	5,637K
2 stacked CNN	40	80.97	5,717K
3 stacked CNN	47	81.46	5,808K
4 stacked CNN	51	81.39	5,855K
Transformer (N=6)	138	81.03	7,234K
Transformer (N=8)	174	81.86	7,615K
Transformer (N=10)	214	81.63	8,004K
BiLSTM+Attention	126	82.37	7,419K
S-LSTM+Attention	87	83.07*	8,858K

3. Classification

Model	Accuracy	Train (s)	Test (s)
Socher et al. (2011)	77.70	-	-
Socher et al. (2012)	79.00	-	-
Kim (2014)	81.50	-	-
Qian et al. (2016)	81.50	-	-
BiLSTM	81.61	51	1.62
2 stacked BiLSTM	81.94	98	3.18
3 stacked BiLSTM	81.71	137	4.67
3 stacked CNN	81.59	31	1.04
Transformer (N=8)	81.97	89	2.75
S-LSTM	82.45*	41	1.53

Dataset	SLSTM	Time (s)	BiLSTM	Time (s)	2 BiLSTM	Time (s)
Camera	90.02*	50 (2.85)	87.05	115 (8.37)	88.07	221 (16.1)
Video	86.75*	55 (3.95)	84.73	140 (12.59)	85.23	268 (25.86)
Health	86.5	37 (2.17)	85.52	118 (6.38)	85.89	227 (11.16)
Music	82.04*	52 (3.44)	78,74	185 (12.27)	80.45	268 (23.46)
Kitchen	84.54*	40 (2.50)	82.22	118 (10.18)	83.77	225 (19.77)
DVD	85.52*	63 (5.29)	83.71	166 (15.42)	84.77	217 (28.31)
Toys	85.25	39 (2.42)	85.72	119 (7.58)	85.82	231 (14.83)
Baby	86.25*	40 (2.63)	84,51	125 (8.50)	85.45	238 (17.73)
Books	83,44*	64 (3.64)	82.12	240 (13.59)	82.77	458 (28.82)
IMDB	87.15*	67 (3.69)	86.02	248 (13.33)	86.55	486 (26.22)
MR	76.2	27 (1.25)	75.73	39 (2.27)	75.98	72 (4.63)
Appeal	85.75	35 (2.83)	86.05	119 (11.98)	86.35*	229 (22.76)
Magazines	93.75*	51 (2.93)	92.52	214 (11.06)	92.89	417 (22.77)
Electronics	83.25*	47 (2.55)	82.51	195 (10.14)	82.33	356 (19.77)
Sports	85.75*	44 (2.64)	84.04	172 (8.64)	84.78	328 (16.34)
Software	87.75*	54 (2.98)	86.73	245 (12.38)	86.97	459 (24.68)
Average	85.38*	47.30 (2.98)	84.01	153.48 (10.29)	84.64	282.24 (20.2

16 sets for classification

Movie review

4. Sequential labeling

Model	F1	Train (s)	Test (s)		
Collobert et al. (2011)	89.59	-	-		
Passos et al. (2014)	90.90	-	-		
Luo et al. (2015)	91.20	-	-		
Huang et al. (2015)	90.10	-	-		
Lample et al. (2016)	90.94	-	-		
Ma and Hovy (2016)	91.21	-	-		
Yang et al. (2017)	91.26	-	-		
Rei (2017)	86.26	-	-		
Peters et al. (2017)	91.93	-	-		
BiLSTM	90.96	82	9.89		
2 stacked BiLSTM	91.02	159	18.88		
3 stacked BiLSTM	91.06	235	30.97		
S-LSTM	91.57*	79	9.78		
Named entity recognition					

Model	Accuracy	Train (s)	Test (s)
Manning (2011)	97.28	-	-
Collobert et al. (2011)	97.29	-	-
Sun (2014)	97.36	-	-
søgaard (2011)	97.50	-	-
Huang et al. (2015)	97.55	-	-
Ma and Hovy (2016)	97.55	-	-
Yang et al. (2017)	97.55	-	-
BiLSTM	97.35	254	22.50
2 stacked BiLSTM	97.41	501	43.99
3 stacked BiLSTM	97.40	746	64.96
S-LSTM	97.55	237	22.16

POS tagging

5. Contrast with Bi-LSTM

References

1. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS, pages 6000-6010.
Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016. Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In Proceedings of COLING 2016, pages 2428-2437.
Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation. Vancouver, pages 28-39.
Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis.Foundations and Trends in Information Re-trieval 2(1-2):1-135.
Penefei Lu Xineng Ou, and Xuanijng Huang. 2017. Adversarial multi-task learning for text classification. In Proceedings of the Proceeding Internation Proceedings (Pages 2017).

5. Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial multi-task learning for text classification. In Pro-

Ceedings of ACL 2017. Vancouver, Canada, pages 1-10.
Tjong Kim Sang, Erik F, and De Meulder Fien. 2003. Introduction to the conll2003 shared task: Languageindependent named entity recognition. In Proceedings of HLTNAACL 2003. Volume 4, pages 142147.
Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of

english: The penn treebank. Computational linguistics 19(2):313330.