Cardinal Virtues: Extracting Relation Cardinalities from Text

Paramita Mirza¹, Simon Razniewski², Fariz Darari² and Gerhard Weikum¹

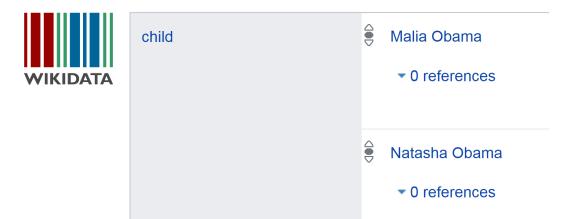
¹ Max Planck Institute for Informatics, Germany ² Free University of Bozen-Bolzano, Italy

1. Overview

- IE has largely focused on answering "Who has won which award?"
- However, some facts are never fully mentioned and no IE method has perfect recall
 - Sentences like "John lives with his spouse and 5 children on a farm in Alabama" are much more frequent in texts.
- We focus instead on answering "How many awards has someone won?"
 - Useful for aggregate query answering, e.g., "Who won the most awards?"
- Contributions:
 - We introduce the problem of **Relation Cardinality Extraction**
 - We present a distant supervision method using Conditional Random Fields
 - We discuss specific challenges that set it apart from standard IE

Relation Cardinality

a mention that expresses relation cardinality


IS

a cardinal number that states the number of objects that stand in a specific relation with a certain subject

"Barack and Michelle Obama have two children, which are currently"

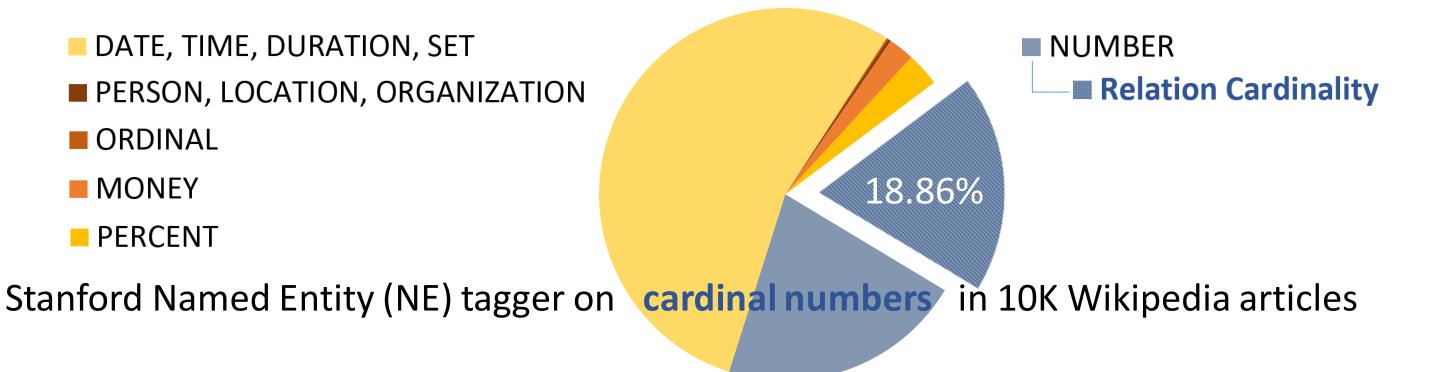
2. Motivation A: Knowledge Base (KB) curation

DBpedia contains currently only 6 out of 35 Dijkstra Prize winners 😕

According to YAGO, the average number of

children per person is **0.02** (3)

2 out of 2 children of Obama are in Wikidata 🙂



"Barack and Michelle Obama have two children, which are currently" KB: 1 KB: 2 KB: 0

Recall: 100% 50% Recall: 0% Recall

4. Relation Cardinality Extraction

3. Motivation B: Disregarded by state-of-the-art (Open) IE systems

Despite its frequency 😕

- Open IE (Mausam et al. 2012; Del Corro and Gemulla, 2013)
 - No way to interpret the numeric expression in the Object slot , e.g., < Obama, has, two children>
- KB-population IE, e.g., NELL (Mitchell et al., 2015)
 - Knows 13 relations about the number of casualties and injuries in disasters, e.g., <Berlin2016attack, hasNumOfVictims, 32>
 - Contains only seed facts and no learned facts

5. Challenges in Relation Cardinality Extraction

"Given a well defined relation/predicate p, a subject s and a corresponding text about s, we try to estimate the *relation cardinality*, i.e., the count of <s, p, *> triples"

Methodology

• Sequence labelling problem:

Barack and Michelle Obama have two children, which are currently Barack and Michelle Obama have _num_ child , which be currently ... → lemma CHILD \mathbf{O} 0 \mathbf{O} \mathbf{O} \bigcap \mathbf{O} \mathbf{O}

- Conditional Random Fields (CRF) model using CRF++ (Kudo, 2005)
 - Feature set: lemma of observed token *t*, context lemmas (windows size = 5), bigrams and trigrams containing t
- Distant supervision for generating training data
 - Given an <*s*, *p*> pair we identify:
 - the triple count <*s, p,* *> from Wikidata (Vrandečić and Krötzsch, 2014); and
 - candidate sentences from **English Wikipedia** article of *s*
 - candidate numbers (not labelled as TEMPORAL, MONEY or PERCENT) in each sentence (if any)
 - We generate training examples by labelling a candidate number *n* with *p* if *n* = |*s, p, **|, otherwise, it is labelled as 0, like the rest of non-number tokens

Prediction

- Having the annotated sentences by the CRF-based model,
- **Relation cardinality** for a given *<s, p>* pair is the candidate number labelled with *p*, which has the highest confidence score (i.e., marginal probability of a token labelled as such, resulting from forward-backward inference)

Quality of Training Data

- Distant supervision from highly incomplete KB
 - e.g., manual annotation on *child* evaluation set \rightarrow Wikidata is only ±50% accurate.
 - Unlike in classical IE, missing ground truth may lead to false positives as well.

• Possible approaches:

- **Filtering ground truth** \rightarrow consider only popular entities for training.
- **Incompleteness-resilient distant supervision** → label all numbers equal or higher than the KB count as positive examples.

Compositionality

• *"They have <u>two</u> sons and <u>one</u> daughter together; he has <u>four</u> children from his first wife."* 16% of false positives in extracting *child* cardinalities

• Possible approaches:

- Aggregating numbers \rightarrow in training data generation, label a sequence of numbers as correct cardinalities if the sum is equal to the KB count; in prediction step, sum up all consecutive cardinalities.
- **Learning composition rules** \rightarrow e.g., children are composed of sons and daughters.

Linguistic Variance

- Ordinals are quite common to express lower bounds, e.g., John's <u>first</u> wife, Mary, ...".
- Relation cardinalities are sometimes expressed with non-numerals, e.g., "He never married", "They have a daughter together", "The book is a trilogy".

• Possible approaches:

• **Translation to numbers** \rightarrow translate certain kinds of negation and indefinite articles

Experiments

- Evaluation on manually annotated randomly sampled subjects for 4 Wikidata properties: 20 (has part), 100 (contains admin.) and 200 (child and spouse)
 - baseline: randomly select a number from a pool of numbers in text
 - only nummod: consider only candidate numbers that modify a noun

p	#s train	baseline	vanilla			only nummod		
		Р	Р	R	F1	Р	R	F1
has part (creative work series)	261	.050	.333	.316	.324	.353	.316	.333
contains admin	18,000	.034	.390	.188	.254	.548	.200	.293
spouse	45,917	0	.014	.011	.013	.028	.017	.021
child	35,057	.112	.151	.129	.139	.320	.219	.260
child (manual ground truth)	6,408		.374	.309	.338	.452	.315	.317

- into expressions containing 0 and 1.
- **Word similarity with cardinals** \rightarrow consider words bear high similarity with cardinal numbers, possibly in other language such as Latin or Greek.

Further Reading

- Predicting Completeness in Knowledge Bases, Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian M. Suchanek, WSDM, Cambridge, UK, 2017
- Expanding Wikidata's Parenthood Information by 178%, or How To Mine Relation Cardinalities, Paramita Mirza, Simon Razniewski, Werner Nutt, ISWC Poster, Osaka, Japan, 2016
- But What Do We Actually Know?, Simon Razniewski, Fabian Suchanek, Werner Nutt, AKBC workshop at NAACL, San Diego, USA, 2016
- Identifying the Extent of Completeness of Query Answers over Partially Complete Databases, Simon Razniewski, Flip Korn, Werner Nutt, Divesh Srivastava, SIGMOD, Melbourne, Australia, 2015
- A tool for crowdsourced completeness annotations for Wikidata: <u>http://cool-wd.inf.unibz.it/</u>

Acknowledgment

This work has been partially supported by the projects "TCFR - The Call for Recall", funded by the Free University of Bozen-Bolzano.