Supplemental Material for the Paper: A Principled Framework for Evaluating Summarizers: Comparing Models of Summary Quality against Human Judgments

Maxime Peyrard and Judith Eckle-Kohler

Research Training Group AIPHES and UKP Lab Computer Science Department, Technische Universität Darmstadt www.aiphes.tu-darmstadt.de, www.ukp.tu-darmstadt.de

A Supplemental Material

A.1 Proof of (θ, O) decomposition theorem

We propose here a rigorous proof of the (θ, O) decomposition theorem. We first repeat the notations and the theorem statement and then propose a proof.

Notation Let $D = \{s_i\}$ be a document collection considered as a set of sentences. A summary S is a subset of D, we note $S \in \mathcal{P}(D)$.

 θ is an objective function defined in the paper by:

$$\begin{array}{cccc} \theta & : & \mathcal{P}(D) & \to & \mathbb{R} \\ & & S & \mapsto & \theta(S) \end{array}$$
 (1)

O is an operator which outputs a summary from a document collection *D* and a given θ :

Suppose c is the length constraint, then O produces S^* by solving the following optimization problem:

$$S^* = \operatorname*{argmax}_{S} \theta(S)$$
$$len(S) = \sum_{s \in S} len(s) \le c$$
(3)

We define an extractive summarizer σ as a set function which takes a document collection $D \in \mathcal{D}$ and outputs a summary $S_{D,\sigma} \in \mathcal{P}(D)$.

$$\begin{array}{rcl}
\sigma & : & \mathcal{D} & \to & \mathcal{S} \\
& D & \mapsto & S_{D,\sigma}
\end{array} \tag{4}$$

Theorem The theorem states that for any summarizer σ there exists at least one tuple (θ, O) which is equivalent to σ :

Theorem 1
$$\forall \sigma, \exists (\theta, O) \text{ such that.}$$

 $\forall D \in \mathcal{D}, \sigma(D) = O(\theta, D)$

Proof We can construct a function θ_{σ} from σ which reconstructs the exact same summaries as σ when optimized by O.

Suppose that $\sigma(D) = S_{D,\sigma}$. We define θ_{σ} to be the following function:

$$\theta_{\sigma}(S) = \begin{cases} 1, ifS = S_{D,\sigma} \\ 0, otherwise \end{cases}$$
(5)

It is clear that $\forall D \in \mathcal{D} : \sigma(D = O(\theta_{\sigma}, D))$, because the optimal summaries according to θ_{σ} are the summaries produced by σ .

Going further At this point, the theorem is proved. While for every summarizer σ there exists at least one tuple (θ, O) , in practice there exist multiple tuples, and the one proposed by the proof would not be useful to rank models of summary quality. We can formulate an algorithm which constructs θ from σ and which yields an ordering of candidate summaries.

Let $\sigma_{D\setminus\{s_1,\ldots,s_n\}}$ be the summarizer σ which still uses D as initial document collection, but which is not allowed to output sentences from $\{s_1,\ldots,s_n\}$ in the final summary.

For a given summary S to score, let $R_{\sigma,S}$ be the smallest set of sentences $\{s_1, \ldots, s_n\}$ that one has to remove from D such that $\sigma_{D\setminus R}$ outputs S. Then the definition of θ_{σ} follows:

$$\theta_{\sigma}(S) = \frac{1}{R_{\sigma,S} + 1} \tag{6}$$

Therefore, if S is the summary outputed by σ without modifying anything, then $\theta_{\sigma}(S) = 1$ is the highest possible score. The scores are decreasing for summaries which need more sentences to be removed. Indeed, these summaries have low scores according to σ and should also have low scores according to θ_{σ} .