Measuring Immediate Adaptation Performance for Neural Machine Translation

Patrick Simianer, Joern Wuebker, John DeNero

Lilt

NAACL '19

1 Motivation & Approach

2 Evaluation

Online adaptation is a key feature of modern computer-aided translation (CAT)

Online adaptation is a key feature of modern computer-aided translation (CAT)

Non-adaptive system

Source #1: Der Terrier beißt die Frau

Online adaptation is a key feature of modern computer-aided translation (CAT)

Non-adaptive system

Source #1: Der Terrier beißt die Frau Hypothesis #1: The dog bites the lady

Online adaptation is a key feature of modern computer-aided translation (CAT)

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman

Online adaptation is a key feature of modern computer-aided translation (CAT)

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman
Source #2:	Der Mann beißt den Terrier

Online adaptation is a key feature of modern computer-aided translation (CAT)

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman
Source #2:	Der Mann beißt den Terrier
Hypothesis #2:	The dog bites the man

Online adaptation is a key feature of modern computer-aided translation (CAT)

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman
Source #2:	Der Mann beißt den Terrier
Source #2: Hypothesis #2:	Der Mann beißt den Terrier The <mark>dog</mark> bites the man

Translators have a reasonable expectation that

- **1** New vocabulary (in context) gets quickly picked up by the system, ideally right away
- 2 The system generally adapts to new domains

Translators have a reasonable expectation that

- 1 New vocabulary (in context) gets quickly picked up by the system, ideally right away
- 2 The system generally adapts to new domains

With **neural machine translation** *fine-tuning* can readily be used [Turchi et al., 2017] (*inter-alia*):

$$\theta_i \leftarrow \theta_{i-1} - \gamma \nabla \mathcal{L}(\theta_{i-1}, \mathbf{x}_i, \mathbf{y}_i).$$

Approach

- Typically [Turchi et al., 2017, Peris et al., 2017, Bertoldi et al., 2014] (*inter-alia*) fine-tuning is evaluated in a batch setting
- · Corpus BLEU or isolated sentence-wise metrics are often used
- These do not necessarily express how fast a system adapts

Approach

- Typically [Turchi et al., 2017, Peris et al., 2017, Bertoldi et al., 2014] (*inter-alia*) fine-tuning is evaluated in a batch setting
- · Corpus BLEU or isolated sentence-wise metrics are often used
- These do not necessarily express how fast a system adapts

As we will show this is not good enough

 \rightarrow We seek to measure perceived, **immediate** adaptation performance

Calculate **recall** on the set of all words that are not stopwords, ignoring length [Papineni et al., 2002] and ordering issues¹ [Kothur et al., 2018]

¹In each of the data sets considered in this work, the average number of occurrences of content words ranges between 1.01 and 1.11 per sentence

Calculate **recall** on the set of all words that are not stopwords, ignoring length [Papineni et al., 2002] and ordering issues¹ [Kothur et al., 2018]

Since the task is online adaptation — specifically focus on **few-shot learning**: Consider only **first** and **second** occurrences of words!

¹In each of the data sets considered in this work, the average number of occurrences of content words ranges between 1.01 and 1.11 per sentence

One-Shot Recall R1

After seeing a word exactly once before in a reference/confirmed translation, is it correctly produced the second time around?

One-Shot Recall R1

After seeing a word exactly once before in a reference/confirmed translation, is it correctly produced the second time around?

$$\mathsf{R1}_i = \frac{|\mathcal{H}_i \cap \mathcal{R}_{1,i}|}{|\mathcal{R}_{1,i}|}$$

- \mathcal{H}_i : Content words in the hypothesis *i*th example
- $\mathcal{R}_{1,i}$: Content words whose **second occurrence** is in the reference for *i*th example

Adaptive system

Source #1: Der Terrier beißt die Frau

Adaptive system

Source #1: Der Terrier beißt die Frau Hypothesis #1: The dog bites the lady

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman
	R1=0/0

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman R1=0/0
Source #2:	Der Mann beißt den Terrier

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman
	R1=0/0
Source #2:	Der Mann beißt den Terrier
Hypothesis #2:	The terrier bites the man

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier bites the woman
	R1=0/0
Source #2:	Der Mann beißt den Terrier
Hypothesis #2:	Der Mann beißt den Terrier The terrier bites the man The man bites ₁ the terrier ₁

Source #1: Hypothesis #1: Reference #1:	Der Terrier beißt die Frau The dog bites the lady The terrier bites the woman R1=0/0
Source #2: Hypothesis #2: Reference #2:	Der Mann beißt den Terrier The terrier bites the man The man $bites_1$ the terrier ₁ R1=2/2

Source #1: Hypothesis #1: Reference #1:	Der Terrier beißt die Frau The dog bites the lady The terrier bites the woman R1=0/0
Source #2: Hypothesis #2: Reference #2:	Der Mann beißt den Terrier The terrier bites the man The man $bites_1$ the terrier ₁ R1=2/2
Total:	R1=2/2

Zero-Shot Recall R0

Not having seen a word before, is it still correctly produced? Is the system adapting to the domain at hand?

Zero-Shot Recall R0

Not having seen a word before, is it still correctly produced? Is the system adapting to the domain at hand?

$$\mathsf{R0}_i = rac{|\mathcal{H}_i \cap \mathcal{R}_{\mathbf{0},i}|}{|\mathcal{R}_{\mathbf{0},i}|}$$

- \mathcal{H}_i : Content words in the hypothesis for *i*th example
- $\mathcal{R}_{0,i}$: Content words that occur for the **first time** in the reference for *i*th example

Zero- and One-Shot Recall R0+1

Combined metric.

$$\mathsf{R0+1}_i = \frac{|\mathcal{H}_i \cap [\mathcal{R}_{0,i} \cup \mathcal{R}_{1,i}]|}{|\mathcal{R}_{0,i} \cup \mathcal{R}_{1,i}|}$$

 \mathcal{H}_i : Content words in the hypothesis for *i*th example $\mathcal{R}_{0,i} \cup \mathcal{R}_{1,i}$: Content words that occur for the **first or second time** in the reference for *i*th example

Corpus-Level Metric

$$R0_{ ext{Corpus}} = rac{\sum_{i=1}^{|\mathcal{G}|} |\mathcal{H}_i \cap \mathcal{R}_{0,i}|}{\sum_{i=1}^{|\mathcal{G}|} |\mathcal{R}_{0,i}|}$$

- Corpus of $|\mathcal{G}|$ source, reference/confirmed segment, hypothesis triplets \mathcal{G} :

Adaptive system

Source #1: Der Terrier beißt die Frau Hypothesis #1: The dog bites the lady Reference #1: The terrier₀ bites₀ the woman₀ R1=0/0

Adaptive system

Source #1: Der Terrier beißt die Frau Hypothesis #1: The dog bites the lady Reference #1: The terrier₀ bites₀ the woman₀ R1=0/0 R0=1/3

Adaptive system

Source #1: Der Terrier beißt die Frau Hypothesis #1: The dog bites the lady Reference #1: The terrier₀ bites₀ the woman₀ R1=0/0 R0=1/3 R0+1=1/3

Adaptive system

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier ₀ bites ₀ the woman ₀
	R1=0/0 R0=1/3 R0+1=1/3

Source #2: Der Mann beißt den Terrier

Source #1:	Der Terrier beißt die Frau
Hypothesis #1:	The dog bites the lady
Reference #1:	The terrier ₀ bites ₀ the woman ₀
	R1=0/0 R0=1/3 R0+1=1/3
	Der Mann beißt den Terrier The terrier bites the man

Source #1:	Der Terrier beißt die Frau						
	The dog bites the lady						
Reference #1:	The terrier ₀ bites ₀ the woman ₀						
	R1=0/0 R0=1/3 R0+1=1/3						
Source #2:	Der Mann beißt den Terrier						
	The terrier bites the man						
Reference #2:	The man $_0$ bites $_1$ the terrier $_1$						
Source #1:	Der Terrier beißt die Frau						
----------------	--	--	--	--	--	--	--
Hypothesis #1:	The dog bites the lady						
Reference #1:	The terrier ₀ bites ₀ the woman ₀						
	R1=0/0 $R0=1/3$ $R0+1=1/3$						
Source #2:	Der Mann beißt den Terrier						
Hypothesis #2:	The terrier bites the man						
Hypothesis #2:							

Source #1:	Der Terrier beißt die Frau					
Hypothesis #1:	The dog bites the lady					
Reference #1:	The terrier ₀ bites ₀ the woman ₀					
	R1=0/0 R0=1/3 R0+1=1/3					
Source #2:	Der Mann beißt den Terrier					
Hypothesis #2:	The terrier bites the man					
Hypothesis #2:						

Source #1:	Der Terrier beißt die Frau						
Hypothesis #1:	The dog bites the lady						
Reference #1:	The terrier ₀ bites ₀ the woman ₀						
	R1=0/0 $R0=1/3$ $R0+1=1/3$						
Source #2:	Der Mann beißt den Terrier						
	Der Mann beißt den Terrier The terrier bites the man						
Hypothesis #2:							

Source #1: Hypothesis #1: Reference #1:	Der Terrier beißt die Frau The dog bites the lady The terrier ₀ bites ₀ the woman ₀					
	R1=0/0 R0=1/3 R0+1=1/3					
Source #2:	Der Mann beißt den Terrier					
Hypothesis #2:	The terrier bites the man					
Reference #2:	The man_0 bites $_1$ the terrier $_1$					
	R1=2/2 R0=1/1 R0+1=3/3					
Totals:	R1=2/2					

Source #1: Hypothesis #1: Reference #1:	Der Terrier beißt die Frau The dog bites the lady The terrier ₀ bites ₀ the woman ₀						
	R1=0/0 R0=1/3 R0+1=1/3						
Source #2:	Der Mann beißt den Terrier						
Hypothesis #2:	The terrier bites the man						
Reference #2:	The man ₀ bites ₁ the terrier ₁						
	R1=2/2 R0=1/1 R0+1=3/3						
Totals:	R1=2/2 R0=2/4						

Source #1: Hypothesis #1: Reference #1:	Der Terrier beißt die Frau The <mark>dog bites</mark> the <mark>lady</mark> The terrier₀ bites 0 the woman 0					
	R1=0/0 $R0=1/3$ $R0+1=1/3$					
Source #2:	Der Mann beißt den Terrier					
Hypothesis #2:	The terrier bites the man					
Reference #2:	The man $_0$ bites $_1$ the terrier $_1$					
	R1=2/2 R0=1/1 R0+1=3/3					
Totals:	R1=2/2 R0=2/4 R0+1=4/6					

Evaluation: Adaptation Methods

The task is **online adaptation** to the *Autodesk* data set [Zhechev, 2012]. The **background model** is an English-to-German Transformer, trained on about 100M segments.

Evaluation: Adaptation Methods

The task is **online adaptation** to the *Autodesk* data set [Zhechev, 2012]. The **background model** is an English-to-German Transformer, trained on about 100M segments.

Four methods for comparison:

bias Add an additional bias to the output projection [Michel and Neubig, 2018]

full Fine-tuning of all weights

top Adapt top encoder/decoder layers only

lasso Dynamic selection of adapted tensors with group lasso regularization [Wuebker et al., 2018]

Results

Results contrasting traditional MT metrics — *BLEU, and TER* — *to the proposed metrics.* Relative differences for adaptive systems, positive results highlighted with green color.

System $\downarrow /$ Metric \rightarrow	BLEU	TER	R1	R0	R0+1
baseline	40.3	45.2	44.9	39.3	41.0
bias	0	0	1	0	0
full	17	-3	22	-9	1
top	7	10	12	-9	-2
lasso	15	-6	8	3	4

Results when calculating the metrics only for truly novel content words, i.e. ones that do not occur in the training data.

System $\downarrow /$ Metric \rightarrow	R1	R0	R0+1
baseline	27.1	40.7	29.9
full	55	-4	13
lasso	30	18	21

Conclusion

- Immediate adaptation performance is important for adaptive MT in CAT
- We proposed **three metrics** for measuring immediate and possibly perceived adaptation performance
 - R1 for one-shot recall, quantifying pick up of new vocabulary
 - R0 for zero-shot recall, quantifying general domain adaptation performance
 - The combined metric R0+1
- These metrics give a **different signal** than the MT metrics that are traditionally used
- Zero-shot recall R0 suffers from unregularized adaptation!
- Careful regularization can mitigate this effect, while retaining most of the one-shot recall R1

Conclusion

- Immediate adaptation performance is important for adaptive MT in CAT
- We proposed **three metrics** for measuring immediate and possibly perceived adaptation performance
 - R1 for one-shot recall, quantifying pick up of new vocabulary
 - R0 for zero-shot recall, quantifying general domain adaptation performance
 - The combined metric R0+1
- These metrics give a **different signal** than the MT metrics that are traditionally used
- Zero-shot recall R0 suffers from unregularized adaptation!
- **Careful regularization** can mitigate this effect, while retaining most of the one-shot recall R1

Thank you!

Bibliography I

- N. Bertoldi, P. Simianer, M. Cettolo, K. Wäschle, M. Federico, and S. Riezler. Online adaptation to post-edits for phrase-based statistical machine translation. *Machine Translation*, 28(3-4):309–339, 2014.
- S. S. R. Kothur, R. Knowles, and P. Koehn. Document-level adaptation for neural machine translation. In *Proceedings of the 2nd Workshop on Neural Machine Translation and Generation*, pages 64–73, 2018.
- P. Michel and G. Neubig. Extreme adaptation for personalized neural machine translation. *arXiv preprint arXiv:1805.01817*, 2018.
- K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting on association for computational linguistics*, pages 311–318. Association for Computational Linguistics, 2002.
- Á. Peris, L. Cebrián, and F. Casacuberta. Online learning for neural machine translation post-editing. *arXiv preprint arXiv:1706.03196*, 2017.

Bibliography II

- M. Turchi, M. Negri, M. A. Farajian, and M. Federico. Continuous learning from human post-edits for neural machine translation. *The Prague Bulletin of Mathematical Linguistics*, 108(1):233–244, 2017.
- J. Wuebker, P. Simianer, and J. DeNero. Compact personalized models for neural machine translation. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, 2018.
- V. Zhechev. Machine translation infrastructure and post-editing performance at autodesk. In *AMTA 2012 workshop on post-editing technology and practice (WPTP 2012)*, pages 87–96. San Diego USA, 2012.

Results when calculating the metrics with subwords.

System $\downarrow /$ Metric \rightarrow	R1	R0	R0+1
baseline	48.1	44.1	45.5
full	14	-8	0
lasso	7	-1	2

Complete Results Table

User 1	BLEU	SBLEU	TER	R0+1	R0	R 1
baseline	35.7	55.2	52.4	44.3	42.8	50.3
bias	8	6	-4	-5	-5	-4
full	36	18	-22	-4	-7	6
lasso	38	18	-23	1	-1	8
fixed	34	18	-22	-6	-9	4
top	29	16	-17	-5	-8	4
User 2	BLEU	SBLEU	TER	R0+1	R0	R1
baseline	35.5	56.2	51.0	43.6	41.0	51.2
bias	0	0	0	0	0	-1
full	0	5	5	-3	-5	4
lasso	6	6	-6	2	0	7
fixed	-5	4	13	-4	-7	1
top	-3	3	- 4	-5	-7	-2
Autodesk	BLEU	SBLEU	TER	R0+1	R0	R1
baseline	40.3	49.3	45.2	41.0	39.3	44.9
bias	0	0	0	0	0	1
full	17	13	-3	1	-9	22
lasso	15	10	-6	4	3	8
fixed	17	13	-9	0	-9	16
top	7	10	10	-2	-9	12
TED	BLEU	SBLEU	TER	R0+1	R0	R1
baseline	25.9	56.0	54.2	42.6	39.5	53.2
bias	1	0	0	0	0	0
full	0	1	1	-3	-6	3
lasso	4	2	-2	-1	-3	4
fixed	-3	0	4	-4	-7	2
top	-6	0	9	-2	-5	5
Patent	BLEU	SBLEU	TER	R0+1	R0	R1
baseline	53.5	62.1	31.7	51.8	49.7	57.3
bias	2	1	-2	0	0	0
full	3	2	-2	-2	-5	7
lasso	4	2	-4	0	-2	5
fixed	2	1	1	-4	-7	4
top	2	1	-1	-3	-5	2