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Motivation

Architecture & Training

Domain Adaptation
● Neural question answering (QA) systems 

outperform traditional methods in open-domain 
factoid QA.

● In biomedicine, datasets are too small to apply 
deep learning directly.

● Can we bridge this gap via domain adaptation?

● Our system is pre-trained on SQuAD, a large-scale 
(105) open-domain factoid QA dataset.

● Then, we adapt the system to the biomedical 
domain, using BioASQ, a small (103) biomedical 
QA dataset.
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Question Type Features

● Our architecture wraps an existing neural QA 
system (FastQA [1]), with the following changes:
○ Input Layer: In addition to GloVe embeddings 

and character embeddings, we feed biomedical 
token embeddings and question type features.

○ Output Layer: We generalize our activation and 
decoding process to support list questions in 
addition to factoid questions.

● During training, we explore several domain 
adaptation techniques, including mere fine-tuning, 
joint training, and forgetting cost regularization [2].

Results

● Pre-training on SQuAD and fine-tuning 
on BioASQ already improves performance 
significantly over training on BioASQ only.

● The forgetting cost improves results 
slightly for factoid questions.

● In order to compare our system to the state of the art in biomedical 
QA, we tested it on the 2016 BioASQ challenge.

● We compared a single model and model ensemble.
● Our system achieves state-of-the-art results on factoid questions 

and competitive results on list questions.
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