
A Candidate collection details

A.1 Part–whole relations

For multi-word object names (pony tail, right
arm), appearing as wholes or parts, we first check
if the whole name appears in WordNet. If so, we
accept the multi-word noun as a candidate. Else,
we check if the name has a descriptor using a short
manually selected list of colors (e.g., red) and spa-
tial descriptors (e.g., left), and take the second
word heuristically if so. We additionally lemma-
tize each object name with WordNet.

A.2 Adjectives

To ensure data diversity, we use a list of com-
mon color names to limit color adjectives to one
per part–whole pair. We also filter out adjectives
that form a common multi-word expression when
paired with the whole noun (e.g., dutch oven, sick
bed).

B Non-visual annotation

We also attempted to gather annotations for triples
with part–whole relations originating from other
sources, such as ConceptNet (Speer et al., 2017)
and Wikidata (Vrandečić and Krötzsch, 2014).
However, after gathering part–whole relations and
applying various filters, we still observed that
about 20% of part–whole relations were invalid.
Moreover, the agreement within our selected pool
of crowd workers, and within the authors, was
worse than that for the Visual Genome-based data
and judged to be too low. As a result, in this work
we focus on visual data, leaving a robust general
data collection approach to future work.

C Model selection

C.1 Word embedding MLP

To choose the number of layers and the variety
of word embedding, we evaluated [0, 1, 2] num-
bers of hidden layers, and pre-trained word em-
beddings from GloVe, ELMo (Peters et al., 2018),
and ConceptNet Numberbatch (Speer et al., 2017)
by evaluation on the validation set. We do not
update the embeddings as we found that this did
not improve performance on the validation set.
We also tried ordinal classification approaches, but
these did not outperform categorical models. This
model is implemented in PyTorch 0.44.

4https://github.com/pytorch/pytorch

C.2 Language model fine-tuning
We performed light hyperparameter tuning, us-
ing the validation set, over learning rate for both
models and warm-up proportion for BERT. For
both models, we use open-sourced PyTorch re-
implementations that match the original imple-
mentations in performance.56

D Context sentence validation

A valid context sentence contains the whole and
adjective words in an amod relation. We iden-
tify these sentences by first filtering with simple
string matching for sentences that contain the two
words adjacent to each other, and then verifying
that they exist in an amod relation using the depen-
dency parser from spaCy7. We choose a distinct
whole–adjective context sentence for each adjec-
tive whenever possible.

5https://github.com/huggingface/
pytorch-pretrained-BERT

6https://github.com/huggingface/
pytorch-openai-transformer-lm

7https://github.com/explosion/spaCy

https://github.com/pytorch/pytorch
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-openai-transformer-lm
https://github.com/huggingface/pytorch-openai-transformer-lm
https://github.com/explosion/spaCy

