
A Parameter Initialization Derivation

Following the derivation of Glorot and Kaiming
initialization (Glorot and Bengio, 2010; He et al.,
2015), we assume the values of each input vector
xt are i.i.d with zero mean and a small variance:

E[xt,i] = 0, Var[xt,i] ⌧ 1 81 i d .

We initialize each weight matrix with zero mean
and a variance of 1/d. After a matrix multiplica-
tion y = Wxt, each value yi would have

E[yi] = E[
X

j

wi,jxt,j] = 0

Var[yi] =
X

j

Var[wi,j] · Var[xt,j] = Var[x] ,

which means the scale of the values after matrix
multiplication remains the same.

A.1 Computing Var[ct]
Let ft,i be the i-th entry of the forget gate ft:

ft,i = �(w>
f,ixt + vf,i ct�1,i + bf,i) .

The pre-activation value will be sufficiently close
to 0 because the parameters are initialized with
zero mean and small variance and the bias value
is initially 0. As a result,

E[ft,i] = �(0) = 0.5 .

The state value ct,i is computed according to

ct,i = ft,i · ct�1,i + (1� ft,i) · (w>
i xt) .

Substituting the expectation of ft,i in, we get:6

ct,i = w>
i

⇣xt

2
+

xt�1

4
+

xt�2

8
+ · · ·

⌘
.

Therefore, E[ct,i] = 0 as E[w>x] = 0. The vari-
ance of ct,i however depends on the correlation be-
tween input vectors. When the input vectors are
independent:

Var[ct,i] = Var[w>
i x]

✓
1

22
+

1

42
+

1

82
+ · · ·

◆

⇡ Var[w>
i x] ·

1

3
= Var[x]/3 .

However, the two vectors in the input sequence,
for instance xt and x0

t, are not necessarily indepen-
dent, for example because two words in an input

6We are ignoring the correlation between ft,i and ft,i0
here because their variance is small.

Table 1

1 0.4015
2 0.4841
3 0.5733
4 0.65
5 0.7386
6 0.7996
7 0.8532
8 0.8853
9 0.9363
10 1

0.33

0.55

0.78

1.00

1 2 3 4 5 6 7 8 9 10

0.40
0.48

0.57
0.65

0.74
0.80

0.85 0.89
0.94

1.00

layer number

Var[c]/Var[x]

�1

Figure 6: Empirical estimation of the variance ra-
tio Var[ct]/Var[xt] at each layer in a randomly
initialized SRU model. We use the pre-trained
word2vec embeddings as input, resulting an ini-
tial ratio slightly higher than 1/3. As expected,
the ratio increases to 1 in deep layers.

sentence are often correlated. When the input vec-
tors are perfectly correlated xt = xt�1 = · · · = x,
on the other hand,

Var[ct,i] = Var[w>
i x] = Var[x] .

In practice, multiple SRU layers are stacked to
construct a deep network. The internal state ct
and ht would be a weighted combination of inputs
{x1 · · ·xt}, which will increase the correlation of
the state vectors at different steps. These state vec-
tors are again fed into the next layer, and keep in-
creasing the correlation. As a result, we expect the
actual ratio between the variance of ct and that of
the input of the current layer xt lies between the
two derived values,

1

3
 Var[c]

Var[x]
 1 , (5)

and would finally converge to the upper bound
value of 1. Figure 6 confirms our expectation by
computing the empirical value of Var[c]/Var[x] in
deep SRU networks.

A.2 Computing Var[ht]
Given the result in Equation (5), we proceed to
compute Var[ht]. The i-th entry of ht is similarly
computed as

ht,i = rt,i · ct,i + (1� rt,i) · xt,i
where rt,i = �(w>

r,ixt + vr,ict�1,i + br,i) .

The highway reset gate is not necessarily initial-
ized with a zero bias. Let the initial bias be b and
u = w>

r,ixt + vr,ict�1,i denote the rest of terms

in the sigmoid function. We have E[u] = 0 and
Var[u] ⌧ 1 because xt and ct�1 have small vari-
ance.

We approximate the value of rt,i using its Taylor
expansion at u = 0:

rt,i = �(u+ b)

⇡ e
b

eb + 1
+

e
b · u

(eb + 1)2

E[r2t,i] ⇡ e
2b

(eb + 1)2
+

e
2b · u2

(eb + 1)4
.

We can ignore the term with u
2 since Var[u] ⌧ 1,

which gives us

E[r2t,i] ⇡ e
2b

(eb + 1)2
.

Substituting this result in Var[ht,i],

Var[ht,i] = E
⇥
r
2
t,ic

2
t,i + (1� rt,i)

2
x
2
t,i

⇤

=
e
2b · Var[c]
(eb + 1)2

+
Var[x]

(eb + 1)2
(6)

Since from (5) we have Var[x]/3 Var[c]
Var[x], we get the bound of Var[ht,i]

e
2b + 3

3(eb + 1)2
 Var[h]

Var[x]
 e

2b + 1

(eb + 1)2

which is equivalent to

1

3
 Var[h]

Var[x]
 1

2

when b = 0.

A.3 Computing the Scaling Constant ↵
Finally, we compute the scaling constant ↵ (Sec-
tion 3.2). Using the result in Equation (6), when ↵

is introduced we get:

Var[ht,i] =
e
2b · Var[c]
(eb + 1)2

+
↵
2 · Var[x]
(eb + 1)2

⇡ e
2b + ↵

2

(eb + 1)2
· Var[x] ,

as Var[c] ! Var[x] according to Equation (5) and
the empirical evaluation (Figure 6). This implies
e
2b + ↵ = (1 + e

b)2 if we want Var[h] ⇡ Var[x].
By solving for ↵ we have

↵ =
p
1 + 2 · eb ,

and ↵ =
p
3 when b = 0.

B Experimental Details

We include additional experimental setup and re-
sults in this section.

B.1 Classification

The data and pre-processing code are obtained
from the code repository of Harvard NLP.7

We use a batch size of 32 and a dropout proba-
bility of 0.5 for all models. In addition, we incre-
ment the dropout to 0.55 or 0.6 for the 8-layer SRU
model. Following the implementation of (Kim,
2014), out-of-vocabulary words that are not in the
pre-trained embeddings are initialized with ran-
dom vectors with values from [�0.25, 0.25].

B.2 Question Answering

We use a word embedding dropout of 0.5 and a
recurrent dropout of 0.2. In the setup of Chen
et al. (2017a), the bi-LSTM models concatenates
the output of each layer and feed it to subsequent
layers. This helps the gradient propagation and
improves the final performance. With highway
connection, this is no longer necessary. In SRU
and Q-RNN (with highway), only the output of the
last layer is given to subsequent layers.

B.3 Machine Translation

We use the OpenNMT PyTorch implementation
for the translation experiments.Table 6 shows the
list of configuration options used for training. For
evaluation, we use beam size 5 and length penalty
0.6.

-layers 4 to 6 -share_embedding
-rnn_size 512 -position_encoding
-word_vec_size 512 -param_init 0
-batch_type tokens -max_grad_norm 0
-normalization tokens -dropout 0.1
-batch_size 5120 -label_smoothing 0.1
-accum_count 5 -epoch 40
-optim adam -param_init_glorot
-learning_rate 2
-adam_beta2 0.998
-decay_method noam
-warmup_steps 16000

Table 6: Translation training configuration.

7
https://github.com/harvardnlp/

sent-conv-torch

https://github.com/harvardnlp/sent-conv-torch
https://github.com/harvardnlp/sent-conv-torch

Epoch Transformer base w/ SRU (4 layer) w/ SRU (5 layer)
Valid Test Valid Test Valid Test

20 26.1 27.3 26.2 27.6 26.6 27.9
21 26.2 27.3 26.3 27.7 26.6 28.1
22 26.1 27.4 26.3 27.8 26.7 28.0
23 26.2 27.4 26.4 27.7 26.8 28.1
24 26.2 27.4 26.4 27.8 26.7 28.0
25 26.3 27.4 26.4 27.7 26.6 28.1
26 26.5 27.5 26.5 27.7 26.7 28.1
27 26.4 27.6 26.4 27.6 26.8 28.1
28 26.4 27.6 26.4 27.7 26.7 28.2
29 26.4 27.5 26.4 27.8 26.8 28.2
30 26.5 27.7 26.4 27.8 26.9 28.1
31 26.4 27.6 26.6 27.7 26.9 28.3
32 26.5 27.5 26.5 27.8 26.9 28.3
33 26.5 27.5 26.5 27.8 27.1 28.3
34 26.4 27.6 26.5 27.9 26.9 28.2
35 26.4 27.6 26.5 27.9 26.9 28.2
36 26.5 27.6 26.5 27.8 26.9 28.3
37 26.5 27.5 26.5 27.8 26.9 28.2
38 26.5 27.6 26.5 28.0 27.0 28.2
39 26.5 27.6 26.7 27.8 27.0 28.2
40 26.6 27.6 26.6 27.9 27.0 28.2

Table 7: Average BLEU scores after each epoch.

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Table 1

Base model (6) w/ SRU (5, 0.2) w/ SRU (4, 0.1) w/ SRU (5, 0.1,
1536)

8.8449 6.9806

6.8904 5.7221

6.0114 5.1309

5.5672 4.8197

5.3095 4.6361

5.1364 4.5104

5.0100 4.4275

4.9129 4.3571

4.8346 4.2995

4.7704 4.2550

4.7163 4.2146

4.6698 4.1893

4.6295 4.1635

4.5939 4.1360

4.5623 4.1260

4.5339 4.1007

4.5084 4.0810

4.4852 4.0714

4.4638 4.0579

4.4443 4.0455

4.4261 4.0365

4.4094 4.0272

4.3939 4.0191

4.3791 4.0091

4.3656 4.0035

4.3527 3.9950

4.3406 3.9850

4.3293 3.9784

4.3188 3.9771

4.3085 3.9825

4.2989 3.9752

4.2896 3.9656

4.2809 3.9641

4.2726 3.9540

4.2645 3.9517

4.2568 3.9482

4.2495 3.9456

4.2423 3.9421

4.2357 3.9353

8.0749 6.4272

6.4581 5.4060

5.6984 4.8829

5.2985 4.6175

5.0637 4.4721

4.9053 4.3722

4.7891 4.2944

4.6997 4.2504

4.6281 4.2073

4.5686 4.1802

4.5186 4.1461

4.4760 4.1203

4.4386 4.0945

4.4060 4.0821

4.3768 4.0678

4.3508 4.0517

4.3272 4.0476

4.3056 4.0331

4.2861 4.0280

4.2681 4.0205

4.2512 4.0098

4.2359 4.0094

4.2216 4.0000

4.2080 3.9928

4.1957 3.9873

4.1839 3.9876

67%

68%

70%

71%

72%

1 10 20 30 40

Base model (6)
w/ SRU (4, 0.1)
w/ SRU (5, 0.2)

Train PPL

Va
lid

Train-valid perplexity Valid accuracy

Epoch

67%

68%

70%

71%

72%

1 10 20 30 40

Base model
w/ SRU (4 layer)
w/ SRU (5 layer)

Valid accuracy

Epoch

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Base model
w/ SRU (5 layer)
w/ SRU (4 layer)

Train-valid perplexity

Va
lid

Train PPL

�1

Figure 7: Training and validation perplexity curves
of the base model and two SRU models.

Table 7 shows the averaged BLEU score of each
model from 20th to 40th epoch. The improve-
ment over the Transformer base model is consis-
tent across different epochs.

Figure 7 plots the training and validation per-
plexity of three models. With a higher dropout
(0.2) used for the SRU, the 5-layer model gets con-
sistent lower validation perplexity over the base
model and the 4-layer model. We also see that
models with SRU exhibit much faster training
progress with much lower training perplexity, sug-
gesting the models could be tuned better with fur-
ther training regularization.

B.4 Character-level Language Modeling
We train all models using a weight decay of 10�7

and a gradient clipping of 0.3. We set the learn-
ing rate factor of Noam scheduling to 3 and the
warmup steps to 32, 000 (8, 000 for models with-
out projection). We tune the dropout probability
from {0.2, 0.3}.

The projection (bottleneck) trick is imple-
mented as follows. Recall that the batched mul-
tiplication of SRU is computed as

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] .

The stacked parameter matrices on the left is re-
parameterized by a low-rank factorization,

0

@
W
Wf

Wr

1

A = P>Q ,

where Q 2 Rdin⇥d0 and P 2 R3dout⇥d0 are two
new parameter matrices to be learned, and d

0 is the
projection dimension that is much smaller than the
input and output dimension of the SRU.

