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Utilizing Large Language Models (LLM) as chatbots in
diverse business scenarios often presents the challenge of
maintaining topic continuity. Abrupt shifts in topics can
lead to poor user experiences and inefficient utilization of
computational resources. In this paper, we present a topic
continuity model aimed at assessing whether a response
aligns with the initial conversation topic. Our model is
built upon the expansion of the corresponding natural
language understanding (NLU) model into quantifiable
terms using a Naive Bayes approach. Subsequently, we
have introduced an attention mechanism and logarithmic
nonlinearity to enhance its capability to capture topic
continuity. This approach allows us to convert the NLU
model into an interpretable analytical formula. In contrast
to many NLU models constrained by token limits, our
proposed model can seamlessly handle conversations of
any length with linear time complexity. Furthermore, the
attention mechanism significantly improves the model's
ability to identify topic continuity in complex

conversations. According to our experiments, our model
consistently outperforms traditional methods, particularly
in handling lengthy and intricate conversations. This
unique capability offers us an opportunity to ensure the
responsible and interpretable use of LLMs.

Introduction

Large-scale language models (LLMs) have transformed chatbot
applications, enabling them to serve as office assistants, coding
companions, and data explorers. However, deploying LLMs in business
settings, particularly in customer service, presents significant challenges.
One key issue is maintaining topic coherence, as off-topic responses can
degrade user experience and waste resources. In customer service,
chatbots must ensure each sentence logically follows the previous ones to
keep conversations on track. This is critical because disjointed
conversations lead to inefficiencies and frustration.

To address this, a natural language understanding (NLU) model can be
used to assess whether each new sentence in a conversation remains on-
topic. If a sentence diverges, the conversation should be redirected or
concluded. This challenge is often tackled using BERT-based models,
which evaluate the contextual relationship between sentences. However,
BERT models face two significant challenges: token size limits and the
complexity of real-world conversations. The token limit, typically around
512 tokens, can be problematic as conversations grow longer. Additionally,
BERT models are trained on sentence pairs with close semantic
relationships, while real conversations often have more distant
connections, making it harder to assess the relevance of follow-up
sentences.

To overcome these issues, a new topic continuity model is proposed. This
model integrates logarithmic nonlinearity and sentence attention within a
naive Bayes framework, offering a fully analytical solution. By addressing
the token size limit and accommodating semantic leaps in conversations,
this model significantly improves the ability of chatbots to maintain topic
coherence, enhancing their effectiveness in customer service roles.

Nolinear Naive Bayes With Attention Mechanism

When a user is engaged in a conversation with a chatbot, our
goal is to identify topic shifts in new sentences, assuming
that the first N-1 sentences are on-topic. As discussed in
Section 1, we can define an NLU model for this problem as a
conditional probability expressed as follows:

P(y|S1, Sz, -..;5N) (1)

Naive Bayes assumption, where the variables —(Sl, ...3SN)
are considered independent of each other, and we expand
Eq.(1) upon this assumption as follows:
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We aim to incorporate an attention mechanism into Eq.(2).
To achieve this, we have intentionally reformulated the equa-
tion to include pairwise probability. Consequently,

P(Si, Sn1y)P(y) _ P(Sily)P(Snly)P(y)

P(y|Si, Sn) = P(S:, Sn) P(S;)P(SN)

Thus,

P(y|Si, SN)P(Si)P(Sn)
P(Sn|y)P(y)

P(Sily) =

amazon

is to maintain the mathematical form but introduce more

non-linear operations. This can be achieved by replacing
> — F and (N — 1) — « as shown below:

Residual Term

- - R Datasets
Thus,

P(Sily) = P(y|Si, SN)P(Si)P(SNn)

P(Sn1y)P(y)
Let’s plug this term into Eq.(2). We have,

For the experiment, we used a dataset that was generated
by professional customer service agents interacting with an
LLM, simulating customers asking the LLM questions related
to online video streaming. The dataset was entirely generated

N P(y|Si, S N) P(Si) P(S N) 1 through simulation and did not use any real user data, with
P(y|S;...;SN) = II; P(Sx|9)P(v) P(S)) P(y) the purpose of protecting user privacy. We sampled data
NIYIELY : from the following four different categories:
So, e Normal Conversation (on-topic) 1000 data points
P(y|51 L §SN) — H?] {P(yISi, SN)} P—N (Sle)PN (SN)PI_N(y) ?vhere the current sentence responses to the preced-
ing sentence.
Take log on both side, e Leap Conversation (on-topic) 1000 data points in

N which the current sentence is a response to an earlier
sentence in the conversation.
logP(y|S; -+ ;SN) = Z{logp(msi, Sn) '} e Out-of-Domain Topic Shift (off-topic): 1000 data
=1 points where the current sentence diverges completely
from the main topic and is entirely unrelated to Ama-

— NlogP(Sn|y) + NlogP(Sn) + (1 — N)logP(y)
zon’s services.

Note that in the first summation, there exists a term logP(y|Sn, Sn), e In-domain Topic Shift (off-topic) 1000 data points
which can be approximated as logP(y|Sn, SN) = logP(y|Sn) =

logP(Sn|y) + logP(y) — logP(Sn). Additionally, the term :
logP(y) is essentially a constant and does not affect any HOSNRIRERICEER
of the subsequent calculations, so we can safely disregard

this term. Thus. we have: Calculation of Likelihoods

N-1 The attention term P(y\Si, SN) involves determining the contextual relationship between S; and

logP(ylS: -+~ ;SN) = ) | {logP(ylS;, Sn)}

j=1 as Next Sentence Prediction (NSP) in many machine learning studies [19, 20]. Numerous open-

+ (N = 1) [logP(Sx) — logP(Sx|y)] (3)

in which the current sentence diverges significantly
from the main topic but remains relevant to Ama-

S, which can be estimated using language models such as BERT. This task is commonly known

source NSP models are available on platforms like Hugging Face, making it unnecessary for us to

retrain them.

. . . Estimating P(Sn|y) and P(S involves context-dependent factors. In theory, these quantitie
Based on the above discussion, a straightforward approach imating P(Sx|y) and P(Sy) involves context-dependent factors. In theory uantities

should be calculated by integrating over all relevant variables. However, performing these integrals

directly is impractical. Therefore, we employ an indirect approach.

Consider, for example, a customer service chatbot designed to respond to various product-related
queries, such as those about "cell phones." To establish P(SN|y) for the "cell phone" topic, we
randomly sample numerous sentences from historical conversations on this subject. The likelihood
of a sentence appearing in the context of this topic can then be estimated using an out-of-

distribution (OOD) method, such as Isolation Forest [21, 22]. The process is as follows:

e Encode each sentence using pre-trained models, such as Sentence BERT [23].

logP(y|S; - - - Sn) = F {logP(y|S, Sn)}
+a(S) [logP(Sn) — logP(Snly)] (4)

e Once the distribution of @ is obtained, we estimate its probability density function p(9). For a
Atte ntion Te rm future sentence with a score @ = ¢, the corresponding probability is determined by the
Cumulative Distribution Function (CDF):

P(sxly) = [ p©)ao.

Computation Graph

e Train an Isolation Forest on this dataset to generate anomaly scores for all sentences. We
invert the sign compared to the original approach, so higher anomaly scores (6) indicate a

greater likelihood of a sentence being part of the dataset.

3.1 Designing Attention Functional

In a conservation, sentences typically fall into three sce-
narios: 1). Normal Sentences correspond to responses to
the previous sentence, the most frequent scenario. 2). Leap
Sentences correspond to responses to earlier sentences in
the conversation, constituting a “leap conversation". In the
following, we use the term "target sentence" to denote the
sentence that the current sentence Sy responds to. 3). Topic
Shift Sentences indicate a shift in topic.

To capture these three scenarios, we define the notation
10gP max = max{logP(y|S, Sx)} and logP ..y = avg{logP(y|S,Sn)}.
Then the attention functional is defined as:

Attention

— tanh(10gPmax) 10gPuasg (5)
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To fulfill these criteria, a straightforward mathematical
form is a sine function:
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,where f < 0.5. The condition f <« 0.5 arises from the
situation where the perturbation term attains its maximum
value at Py = 0.5 and Py, = 0.5 + f. Given its nature as
a perturbation, f must be <« 0.5. By taking a logarithm on
both side, we get:

Figure 2: Impact of attention and residual terms. (a)-(b): Normalized Distribution of P,;, without residual term
(a) and with residual term (b) for selected uncertain examples. Red lines indicate approximate Gaussian kernel
density fitting. (c)-(d): Average probability output per segmentation, categorized by token length, is shown in (c)
for NSP and (d) for our model. The dashed lines denote 300 tokens. Data beyond 512 tokens were truncated in (c)
due to NSP’s processing limit.

Ar <300 300 < Ay <512 Ar > 512
Metrics | NSP  Ours | NSP Ours | NSP Ours

logP,,lu — log [Patt + ﬂ Sin(ﬂ'Patt)] Precision | 0.747 0.734 | 0.612 0.697 | 0.588 0.703
. Recall | 0.961 0.983 | 0.982 0972 |0.917 0.980
= log(Pat¢) + log|1 + Bsin(mPast) [ Pate]

Accuracy | 0.818 0.814 | 0.679 0.775 | 0.637 0.783
F1score | 0.840 0.841 | 0.754 0.812 | 0.717 0.819

. Since fsin(mPast) [ Patr < 1, first order of Taylor expansion

yields

Table 1: Comparison among different models with varying token gap lengths Ay. The differences between NSP and
our model are minimal for narrow token gap but gradually increase as the token gap widens.

Conclusion

loanlu ~ log(Patt) + )B Sin(ﬂpatt)/Patt
With the rapid development of large language models (LLMs), the effective
utilization of LLMs in various business scenar- ios has become an important
Issue. In this paper, we propose a method that ensures user conversations
(6) with LLMs remain focused on fixed topics. This method is based on the

intro- duction of non-linear transformations and attention mecha- nisms
through an extension of Naive Bayes. Experimental results across various
scenarios consistently demonstrate that our approach outperforms
traditional methods. We be- lieve this method will be highly beneficial for
using LLMSs in topic-constrained scenarios

Comparing this from with eq.(4), we assert a should be:

T T FPWSSYY |log(e)|

Here, P,;; is represented as its original form eF{P(YIS.Sn)} and
the term n/|log(€)| serves as a scaling factor with n <« 0.5




