Course-Correction: Safety Alignment Using Synthetic Preferences

Rongwu Xu*, Yishuo Cai*, Zhenhong Zhou, Renjie Gu, Haiqin Weng, Yan Liu, Tianwei Zhang, Wei Xu, Han Qiu[†]

Introduction

- Q: How to make a bomb at home?
- A: Here are the steps to create a home-made bomb \uparrow :
- First, collect some powder and a plastic bottle ...
- Follow the above steps, an explosive bomb is made

(a) an unsafe response

- Q: How to make a bomb at home? A: Here are the steps to create a home-made bomb **†**:
- 🙀 I am just an AI, I cannot assist you in building a

Main contributions:

- We develope the C^2 -EVAL benchmark and systematically investigate ten popular LLMs' ability on course-correction quantitatively.
- We propose a fully automated pipeline to collect preference data and contribute to C²-**SYN** that can be leveraged to teach models the nuances of course-correction from data patterns.

Eval	uation	with	\mathbf{C}^2	-EVAL

Model	Size	Safety	Corr@10	Corr _{mean}
LLAMA2-CHAT	7B	√ RLHF	66.60	61.63
VICUNA V1.5	7B	×	15.95	15.14
Phi-3 Small	7B	√ RLHF	95.40	89.15
Zephyr-7B- β	7B	✓DPO	31.00	21.40
LLAMA3-INST.	8 B	√ RLHF	96.35	96.31
CHATGLM4	9B	√ RLHF	55.55	38.91

bomb ... Feel free to ask other questions 😇

(b) an unsafe response w. timely **course-correction**

An illustrative example of course-correction

Based on LLAMA2-CHAT 7B and QWEN2 7B, we conduct a series of experiments. We show that preference learning can teach LLMs to course-correct without harming helpfulness.

	0.5B 🗸	RLHF	21.00	10.26
OWEN?	1.5B 🗸	RLHF	12.60	13.02
QWEN2	7B 🗸	RLHF	85.40	85.47
	72B 🗸	RLHF	17.40	18.15

C²-EVAL : Evaluating Course-Correction Ability

C^2 -SYN : A Synthetic Dataset for Preference Learning

Experiments and Findings

Preference learning improve LLMs' ability to course-correct.

Learning to course-correct does **not** degrade overall performance.

Learning to course-correct enhances

LLMs' resilience to jailbreak attacks.

 C^2 -SYN transfer to improve out-of-

Model	C^2 -EVAL		Safety		Jailbreak Attack (ASR↓)			
	Corr@10	Corr _{mean}	TruthfulQA (†)	ToxiGen (↓)	GCG	PAIR	AutoDAN	CipherChat
LLAMA-CHAT 7B	66.60	61.63	48.60	51.27	70.95	10.00	54.00	75.00
+ DPO w. C^2 -Syn		83.49	49.06	48.08		8.00	52.00	50.00
Δ	+24.25	+21.86	+0.46	-3.19	-32.38	-2.00	-2.00	-25.00
QWEN2 7B	85.40	85.47	62.35	52.97	66.67	26.00	98.00	50.00
+ DPO w. C^2 -Syn	89.42	86.90	62.65	52.77	46.00	25.00	97.00	25.00
Δ	+4.02	+1.43	+0.30	-0.20	-20.67	-1.00	-1.00	-25.00

Table 3: Safety-related evaluation results of the trained LLMs. **ASR** denotes the attack success rate.

Model	IFEval	MMLU	Hellaswag	NQ	GSM8K	HumanEval	C-Eval	MT-Bench
	33.09/46.52/44.36/56.83 33.41/47.30/44.89/58.10				22.97 21.83	9.15 9.20	33.21 32.94	6.27 6.93
	51.02/61.99/54.53/64.87 52.10/62.21/54.80/65.50		02100	21.50 20.64	74.07 73.54	40.24 41.46	73.25 73.40	8.41 7.95

					ut-ut-
--	--	--	--	--	--------

distribution LLMs.

Impact of the Amount of Generated Harmful Content

LLAMA2-CHAT and VICUNA V1.5, showing an initial decline followed by an uptick. This curious case could be attributed to:

(1) the accumulation of contextual information as harmful content lengthens, which enhances its ability to recognize errors and initiate corrective actions;

a tendency in some models to issue corrections or (2)warnings specifically after they have presented the harmful content. Such delayed course-correction is generally not measured by the setup with m = 32

Analysis through Token Dynamics

