
A Appendices

A.1 Related Work
Traditional coreference resolution studies are
divided into rule- and machine learning-based
methods. In the rule-based method, Stanford’s
model (Lee et al., 2013), applied to multi-pass
sieve using pronouns, entity attributes, named en-
tity information, and so on. In the statistics-based,
various coreference models have been proposed
such as mention-pair (Ng and Cardie, 2002; Ng,
2010), mention-ranking (Wiseman et al., 2015;
Clark and Manning, 2016a) and entity-level mod-
els (Haghighi and Klein, 2010; Clark and Manning,
2016b).

Lee et al. (2017) defined mentions as span rep-
resentations and proposed a span ranking model
based on long short-term memory (LSTM, (Hochre-
iter and Schmidhuber, 1997)) for all spans in the
document. As span representations could reflect
the contextual information from LSTM, but the
other two spans are interpreted as a related entity.
This phenomenon results in local consistency er-
rors that yield erroneous coreference resolutions.
Hence, Lee et al. (2018) performed the attention
mechanism to resolve coreference using a high-
order function. The end-to-end model of (Lee et al.,
2017, 2018) showed the superior performance in
English coreference resolution however, the com-
plexity of O(n4) is considering all spans and span
pairs of the document. Zhang et al. (2018) is based
on the (Lee et al., 2017), which replaced the concat
attention score into the biaffine attention score to
calculate the conference score. Also, it performed
the multi-task learning process that also calculates
the loss for the mention score.

Simple recurrent units (SRU) (Lei et al., 2017)
architecture solves the vanishing gradient problem
that occurs when back-propagation of the recur-
rent neural network (RNN). SRU, which is one of
RNN types such as gated recurrent unit architec-
ture (GRU) (Cho et al., 2014) and LSTM, is less
computational complexity than other RNN types
because the SRU encodes hidden states using a
feed-forward neural gate and recurrent cell in a
layer.

Recently, a variety of downstream studies us-
ing BERT (Bidirectional Encoder Representations
from Transformer, Vaswani et al. (2017); Devlin
et al. (2019)) which have been pre-trained with
large amounts of data, have been conducted in nat-
ural language processing tasks (Joshi et al., 2019b;

Zhang et al., 2019; Park et al., 2019a; Wang et al.,
2019). A BERT-coref study was also conducted
in the English coreference resolution task, and a
more effective SpanBERT (Joshi et al., 2019a) for
coreference resolution has also been studied, with
dramatic gains in GAP (Webster et al., 2018) and
OntoNotes (Pradhan et al., 2012) datasets. A quali-
tative assessment of BERT-coref showed that BERT
is significantly better at distinguishing unique enti-
ties and concepts.

A.2 Data Format for Our Model
The following example shows input sequence, head
list and decoder output format.

• Input sequence for BERT: ”[CLS] 그리
스/NNP 로마/NNG 신화/NNG 에서/JKB
바 카스/NNP 이/VCP 라고/EC 도/JX
불리/VV 는/ETM 술/NNG 의/JKG
신/NNG [SEP]”

• Heads: ”그리스/NNP, 로마/NNG, 신

화/NNG,바카스/NNP,술/NNG,신/NNG”

• Heads applied by BPE: ”그리스/NNP ,
로마/NNG , 신화/NNG , 바, 술/NNG ,
신/NNG ”

• Head list: [0, 1, 2, 3, 5, 12, 14]

• Decoder output: [0, 0, 0, 0, 0, 5, 5]

We add [CLS] and [SEP] to match the input
sequence to the BERT format. The Heads is an
example of heads included in a sentence, and the
Heads applied by BPE is an example of heads with
BPE applied. BPE divides words into subwords.
The head divided into subwords uses the first token
as the representative of the head. In the example
of the Heads applied by BPE, the representative
of the BPE-applied head ’바’ (Ba) and ’카스/NNP’
(cchus/NNP) is ’바’ (Ba). The Head list is the po-
sition of the head in the sentence that matches the
BERT input format, which is input to the decoder.
The head list is a target class. The decoder output
is a position where the coreference resolves in the
head list. Since ’바’ (Ba) is first mention in the en-
tity of Bacchus, ’바’ (Ba) outputs its own location
of 5. ’신/NNG’ (a god) outputs position 5 because
it is linked to ’바’ (Ba). We then change the output
to word units via post-processing.

A.3 Overall Performance
Please refer to Table 6 for full performance on all
metrics, and dev set results for Table 7.



MUC B3 CEAFφ4 CoNLL
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1
e2e-coref (Lee et al., 2017) 66.9 55.2 60.5 64.5 53.1 58.2 66.1 53.9 59.4 59.4
c2f-coref (Lee et al., 2018) 68.3 56.4 61.8 59.0 53.4 59.0 66.4 54.4 59.8 60.2
BERT-coref (Joshi et al., 2019b) 71.7 65.0 68.2 69.3 63.0 66.0 72.2 62.4 66.9 67.0
BERT-SRU enc-dec (Google) 67.7 61.9 64.6 65.7 59.8 62.6 68.5 58.8 63.3 63.5
BERT-SRU enc-dec (single) 67.3 67.3 67.3 64.8 65.3 65.1 69.5 63.5 66.3 66.2
BERT-SRU enc-dec (ensemble) 72.3 67.6 69.9 70.0 65.2 67.5 75.0 63.0 68.5 68.6
BERT-SRU enc-dec (KD) 68.0 68.2 68.1 65.6 66.0 65.8 71.1 62.9 66.7 66.9

Table 6: Experimental results on the test set of the Korean data from ETRI wiseQA. The final column (CoNLL Avg.
F1) is the main evaluation metric, averaged by the F1 of MUC, B3, and CEAFφ4 . Based on the Korean head-final,
the coreference resolution score is calculated based on the head of the mentions.

Model Avg. F1 ∆

BERT-SRU ptr-net (single) 70.83 -
− fine-tuning 64.74 −6.09
BERT-SRU ptr-net (Google) 67.38 −3.45
BERT-coref 68.62 −2.21

Table 7: Dev set results. We evaluate the performance
of models using different BERT.

A.4 Optimizing Hyperparameters

We perform hyperparameter optimization on the
baseline model of the BERT-SRU Pointer Net-
works, which is not applied to the head target class
component. We optimize hyperparameters for the
development set, and hyperparameter optimization
proceeds for the feature embedding size, the num-
ber of RNN hidden layer dimensions, and the num-
ber of biaffine hidden layer dimensions. We set the
number of dimensions to 50, 100, 200, 400, 800,
1600, respectively, to find the hyperparameters that
give the best performance.

Optimizing Dimension Size of Feature Embed-
ding In Table 8, we perform an optimization of
the feature embedding size and our model shows
the best performance when the embedding size is
1600. At this time, we could see that the overall
performance improves in proportion to the size of
the embedding dimension according to Table 8.

Optimizing Size of RNN Hidden States The
optimization of the number of RNN hidden layer di-
mensions is as shown in Table 9, and when the hid-
den state size is 800, the performance is as good as
Table 8. We consider that our model with the num-
ber of moderately large dimensions shows good
performance because the hidden state e of equa-
tion 1 is that the hidden state of the BERT and the
hidden state of the feature are concatenated.

Optimizing Size of Biaffine Hidden States Ta-
ble 10 shows the optimization of the number of
biaffine hidden layer dimensions, and when the
number of hidden layer dimensions is 50, the per-
formance 69.72% of CoNLL F1 is shown as in the
previous tables. We perform modeling by apply-
ing the head target class component based on the
optimized hyperparameters. As a result, the per-
formance of the single model shows 70.83% of
CoNLL F1.

A.5 Optimizing RNN types

Table 11 compares performance by RNN types
such as SRU, LSTM, and GRU. We choose the
RNN type suitable for Korean coreference reso-
lution and optimize the number of layers of each
RNN type. The optimal RNN type and the num-
ber of layers are 70.83% F1 with 2-layers SRU.
Because the SRU uses a highway network ((Sri-
vastava et al., 2015)), a skip connection is used to
allow the gradient to directly propagate to the pre-
vious layer; the information loss is small even if
the stack is deepened.

A.6 Ensemble Knowledge Distillation

Ensemble Table 12 shows the performances of
ten single models with different random seed and
ensemble models on the dev set. We are interested
in how the proposed model performs under differ-
ent random initial conditions. Our model observes
consistent performance regardless of 10 different
initializations. The lowest performance among the
10-models is 70.04% F1, and the mean F1 score is
70.37%, both of which still outperforms the 68.62
F1 of the Korean BERT-coref from Joshi et al.
(2019b). We perform a maximum score ensemble
and an average score of the ensemble for 10-models.
The maximum score ensemble is 72.26% F1, and
the average score of the ensemble is 72.23% F1.



MUC B3 CEAFφ4 CoNLL
Number of dimensions F1 F1 F1 Pre. Rec. Avg. F1

50 69.71 66.85 64.60 63.05 71.65 67.05
100 69.22 66.86 65.76 62.66 72.65 67.28
200 70.14 67.75 65.85 65.80 70.21 67.91
400 70.42 67.93 66.40 65.38 71.42 68.25
800 70.56 67.82 66.32 65.11 71.69 68.23
1600 71.92 69.16 68.08 66.85 72.85 69.72

Table 8: Optimizing number of feature embedding size on the Korean ETRI dev set.

MUC B3 CEAFφ4 CoNLL
Number of dimensions F1 F1 F1 Pre. Rec. Avg. F1

50 69.76 67.68 69.24 66.48 71.54 68.89
100 69.72 66.71 65.16 64.41 70.25 67.20
200 69.97 67.14 65.44 64.27 71.14 67.52
400 69.26 67.52 68.63 66.88 70.17 68.47
800 71.92 69.16 68.08 66.85 72.85 69.72
1600 70.64 68.32 69.48 67.22 72.00 69.48

Table 9: Optimizing number of RNN hidden layer dimensions on the Korean ETRI dev set.

MUC B3 CEAFφ4 CoNLL
Number of dimensions F1 F1 F1 Pre. Rec. Avg. F1

50 71.92 69.16 68.08 66.85 72.85 69.72
100 70.94 68.36 66.77 67.07 70.48 68.69
200 70.77 68.22 66.24 64.44 72.93 68.41
400 70.97 68.13 66.56 63.92 73.92 68.55
800 70.30 67.39 65.02 63.43 72.36 67.57
1600 70.81 68.23 66.21 67.22 69.74 68.42

Table 10: Optimizing number of Biaffine hidden layer dimensions on the Korean ETRI dev set.



RNN type #Layer Avg. F1
SRU 1 69.30
SRU 2 70.83
GRU 1 69.77
GRU 2 69.74
LSTM 1 69.31
LSTM 2 68.55

Table 11: Optimizing RNN type and the number of lay-
ers on the Korean ETRI dev set.

Seed# Avg. F1 Seed# Avg. F1
Seed 1 70.04 Seed 6 70.23
Seed 2 70.31 Seed 7 70.43
Seed 3 70.45 Seed 8 70.55
Seed 4 70.83 Seed 9 70.61
Seed 5 70.11 Seed 10 70.12

Table 12: Robustness of our model on different seeds
for random initialization. The average of 10-models is
70.37%, and Std. the deviation is 0.253. Note that our
official model is trained on seed 4.

But we choose the average score of the ensemble
because the average ensemble is 1.28% higher than
the maximum score ensemble in the test set.

Knowledge Distillation We optimize the weight
option β of knowledge distillation. The final loss
calculated when training knowledge distillation
can be divided into two methods. The first method
applies β only to the knowledge distillation loss
term as L = Lce + βLkd in equation 7. The
second method applies β to both terms, such as
L = (1− β)Lce + βLkd.

Figure 5 shows the optimization results for the
hyper-parameter β used in the knowledge distilla-

Figure 5: Hyperparameter β optimization of knowledge
distillation on dev set of Korean coreference resolution
.

tion when training with an ensemble knowledge
distillation model. The experiment uses the loss
function of equation 7 with methods and optimizes
β between 0.1 and 1.0. When using the KLD, tem-
perature (Hinton et al., 2015) is set to 5. As a re-
sult, the first method shows that the optimal perfor-
mance is 71.18% F1 when β is 0.2 on the dev set.
This method improves the F1 score by 0.34% com-
pared to the single model. When β 0.1, F1 score
is 71.06%, it is the second-best performance in the
same method. In the case of the second method,
when β is 0.3 and 0.5, F1 scores are 70.66% and
71.01%, respectively, which are improved than the
single model. Accordingly, we can see that knowl-
edge distillation of β below 0.5 is helpful for train-
ing, and it is meaningful to apply the loss of the
first method to Korean coreference resolution.




