

The MIT-LL/AFRL IWSLT-2009 MT System

Wade Shen, Brian Delaney, A. Ryan Aminzadeh Tim Anderson and Ray Slyh 2 December 2009

This work is sponsored by the United States Air Force Research Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

Air Force Research Laboratory -

999999-1 TRA 12/2/2009

• IWSLT-2009 System Architecture

- Better Arabic Morphology Processing
 - CoMMA
- Domain Adaptation Overview
 - Unsupervised and Semi-supervised Adaptation
 - Human-in-the Loop Adaptation

Statistical Translation System

Experimental Architecture

- Standard Statistical Architecture
- Developed in-house to support SMT experiments
 - Framework for experiments with lowresource languages
 - Test-bed for S2S MT system
- Most components are home-grown
 - Phrase Training/Minimum Error Rate Training
 - Moses and FST decoders used, comparable performance
- Participated in Arabic/Turkish ⇒ English BTEC Data track

MIT Lincoln Laboratory

- Based on MIT FST toolkit: <u>http://people.csail.mit.edu/ilh/fst/</u>
- The target language hypothesis is the best path through the following transducer:

$E = I \circ P \circ D \circ T \circ L$

- where,
 - I = source language input acceptor
 - P = phrase segmentation transducer
 - D = weighted phrase swapping transducer
 - T = weighted phrase translation transducer (source phrases to target words)
 - L = weighted target language model acceptor
- Apply phrase swapping twice for long distance reordering
- OOV words are inserted during decoding as parallel links to P, D, T, and L models.
- Allows for direct decoding on pruned ASR lattices

MIT Lincoln Laboratory

Air Force Research Laboratory

System Combination

- Generate consensus networks using round-robin alignment, where each system gets to be the skeleton alignment
- Take union of all consensus networks and apply a language model
- Weight optimization on a development set using nbest lists
- Final combination on unseen data using optimized system weights

MIT Lincoln Laboratory

Air Force Research Laboratory -

- IWSLT-2009 System Architecture
- Better Arabic Morphology Processing

 CoMMA
- Domain Adaptation Overview
 - Unsupervised and Semi-supervised Adaptation
 - Human-in-the Loop Adaptation

Arabic Preprocessing AP5 Review

Preprocessing Method	Mean BLEU on dev6
Baseline (No normalization or AP5)	42.06
Remove all diacritics except tanween, no AP5	49.40
Remove all diacritics, no AP5	50.39
Remove all diacritics, apply AP5	53.55

- "Diacritics" removed:
- \circ Short vowels
- O Sukuun: Marks absence of sort vowel
- Shadda: Marks consonant gemination (i.e., doubling)
- Tanween: Case markers for indefinite forms & other uses
- Tatweel: Stretches letters in Arabic typography (not a true diacritic)
- AP5 segments the following from stems:
- o Prefixes: al-, bi-, fa-, ka-, li-, wa-
- O Suffixes: Attached pronouns

MIT Lincoln Laboratory

Air Force Research Laboratory

Air Force Research Laboratory —

- **Observation:** With limited training data more morphological processing seems to help, less with more training data
- Count Mediated Morphological Analysis
 - Modification to AP5: decide segmentation based on counts
- Given a count threshold t, and a vocabulary W
- Foreach w in |W|
 - Apply AP5 diacritic normalization procedure
 - If count(w) < t</p>
 - Apply AP5 segmentation of clitics, etc.
 - Else don't segment

• MIT Lincoln Laboratory

Baseline (No Tokenization)

COMMA Threshold	BLEU Score		
COMMA Intestion	Dev6	Dev7	
0	50.00	51.94	
20	53.92	54.29	
200	53.14	54.64	► CoMMa
2,000	54.02	54.57	J
10,000	53.33	54.48	

AP5 (all tokens segmented)

- AP5 and CoMMa results in 7-8% relative improvement
- CoMMa only slightly better than AP5, +0.5–1.5 BLEU in system combination

MIT Lincoln Laboratory

999999-9 TRA 12/2/2009 Air Force Research Laboratory -

- IWSLT-2009 System Architecture
- Better Arabic Morphology Processing
 - CoMMA
- Domain Adaptation Overview
 - Unsupervised and Semi-supervised Adaptation
 - Human-in-the Loop Adaptation

- Observations from past work
 - SMT performs best when training and test data are matched
 - Adding large volumes of out-of-domain data to training does not improve performance
- Adaptation
 - GOAL: Optimally port general purpose (out-of-domain) models to specific domain with limited in-domain data

• **NOTE:** Adapted Systems not used in IWSLT BTEC submissions

MIT Lincoln Laboratory

- General purpose data:
 - 500k Arabic-English parallel data from ISI automatically extracted parallel corpus
 - Domain: newswire data
- In-domain (adaptation) data:
 - 20k IWSLT-2009 BTEC Arabic-English training set
 - Domain: travel

Adaptation of Phrase-based MT Models

Semi-supervised

999999-13 TRA 12/2/2009

Adaptation of Phrase-based MT Models Human-in-the-Loop

999999-14 TRA 12/2/2009

- General purpose models used to translate the IWSLT '09 training set
- Translations ranked using METEOR as a proxy for a human judge
- Ranked sentences divided into octiles and used for experiments:
 - Semi-supervised adaptation: Use top scoring octiles for adaptation Goal: is to use best in-domain target data
 - Human-in-the-loop adaptation: Use bottom scoring octiles for adaptation Goal: is to correct worst in-domain target data (active learning paradigm)

Octiles	1	2	3	4	5	6	7	8
METEOR	0.66	0.57	0.51	0.45	0.40	0.34	0.26	0.00

Air Force Research Laboratory =

Adaptation Approaches

Language Model Adaptation

⁹⁹⁹⁹⁹⁹⁻¹⁶ TRA 12/2/2009

 Interpolated phrase table probabilities are computed using the following equation:

$$\hat{p}(s \mid t) = \lambda p_{in-domain}(s \mid t) + (1 - \lambda) p_{gp}(s \mid t)$$

- *p*_{in-domain}: probability estimate from in-domain models
- p_{gp} : probability estimate from general purpose models
- λ: interpolation coefficient computed using the following equation:

$$\lambda = \frac{N_{in-domain}(s,t)}{N_{in-domain}(s,t) + \tau}$$

- τ: Fixed-value MAP relevance factor
- N_{in-domain}(s,t): observed count of phrase pair (s,t)

Experimental Results

Semi-supervised Adaptation

MIT Lincoln Laboratory

Air Force Research Laboratory -

999999-19 TRA 12/2/2009

Experimental Results

Human-in-the-Loop Adaptation

MIT Lincoln Laboratory

Air Force Research Laboratory •

Experimental Results Best System Scores

System	dev7	eval
GP	23.06	21.35
GP + Unsupervised LM + PT Adaptation	25.74	23.86
GP + Semi-supervised LM + PT Adaptation (Top quartile)	27.19	25.89
IWSLT '09 Baseline	54.63	52.69
GP + Human-in-the-Loop LM + PT Adaptation	56.57	56.11

MIT Lincoln Laboratory

Air Force Research Laboratory -

Air Force Research Laboratory

- Morphological processing is critical
 - +4 BLEU for Turkish using Bilkent Analyzer
 - +3.5-4 BLEU for Arabic using AP5
- CoMMa gains in system combination
 - Multiple CoMMa systems (20, 200, 2000): +0.5-1.5 BLEU over AP5
- Unsupervised Adaptation
 - LM: +1.5 BLEU, PT: +0.5 BLEU
 - Combined: +2.5-3.0 BLEU (15% relative) compared to GP only
- Semi-supervised Adaptation
 - Gains +1.5-2 BLEU over Unsupervised, only ¼ of total data
 - But requires human judgement
- Human-in-the-Loop Adaptation
 - +2-3.5 BLEU using all IWSLT data
 - +13 BLEU using 1/8th of total data
 - Gains from LM and PT are non-additive

MIT Lincoln Laboratory