
Sorting by Sound —
Arbitrary Lexical Ordering for Transcribed Thai Text

Doug Cooper
<doug@chula.ac.th>

Center for Research in Computational Linguistics, Bangkok

When either Thai or transcribed (Romanized) Thai is sorted alphabetically, words that sound
very much alike usually end up far apart. maay and may are thrown to opposite ends of the
letter m entries, even though mistaking one for the other causes problems for both foreign
students who cannot speak clearly, and Thais who can't spell. This paper explains how and
why the difficulty occurs, and shows why both Thai and transcription are inherently difficult
to sort by sound. It introduces a method of preprocessing — deriving phonemic signatures
— that lets us define improved lexical or dictionary orders, yet does not require anything but
standard sorting code. The method can be applied to other languages — Lao, Khmer, and
Burmese — that, like Thai, distinguish words on the basis of vowel length and/or tone.

Introduction
Consider the dilemma of the Thai speller: these words are spelled thirteen different ways, but
have essentially the same sound (than), and vary only in tone and vowel length:

flu, lila,	 614

111U, vntd,	 iiiu, Thu, ru, mu.

There are a remarkable number of ways to spell words with this sound. Thai has six dif-
ferent th letters, five ways to show a or aa, and six ways to write the final n. There are also
four different tone marks, and a sign (over this letter 91) that means 'ignore me.' Finally, the
tone mark does not actually give the tone — rather, it modifies an implicit tone that depends
on the word's spelling.

Because a simple one phoneme/one grapheme (or one sound/one letter) relationship
doesn't exist, words with identical or similar sounds can be widely scattered when lexically
ordered. This complicates applications, ranging from 'sound-alike' spell checking to intro-
ductory language instruction, that depend on a Thai word's sound, not its spelling.

As a result, we find that sorting transcribed Thai is much more convenient that using na-
tive Thai orthography. We return to a relatively straightforward relationship between sym-
bols and sounds; one that lets us group words with the same sounds regardless of their origi-
nal Thai spelling.

Sorting transcriptions involves two basic issues: definition and implementation. First, we
must define a lexical or dictionary order: if transcribed Thai adds the IPA symbols a, c, a, ti

to the English a, e, o, u, what should the combined set look like? Should may come before
maay or vice versa? Should two-character symbols like kh or p h be removed from the midst of
the k's and p's? What is the proper order of words that vary only by tone?

Second, we have to find an easy implementation — one that uses existing sort programs,
even with a new character set or lexical order.

This paper looks at the issues involved in sorting by sound. Part I states the problem: it
presents the terminology and issues of ordering, describes the difficulties of languages like
Thai, and looks at questions that persist even with effective transcription systems.

Part II outlines the solution. It lists considerations for defining new lexical orders, then
gives an algorithm for extracting phonemic signatures as part of a sorting strategy.

Finally, Part III deals with the implementation. It shows how to derive phonemic signa-
tures, and uses simple UNIX tools to implement the algorithm for a test alphabet. The
method is easily generalized to any consistent transcription scheme.

273

Part 1: the Problem

Ordering, as opposed to sorting, relies on three sequences collating, sorting, and lexical.

— The collating sequence defines the order of the letters in a character set.

The ASCII set of 128 characters is the best known. Programs compare individual charac-
ters by their positions in the collating sequence; eg. b > a and 2 > 1.

But because ASCII arbitrarily defines relations like A > a and # > $, the collating se-
quence does not reasonably answer questions like what is the correct order of abAB? There
are six equally plausible possibilities: abAB, ABab, aAbB, AaBb, AabB and aABb.

— The sorting sequence overrides the collating sequence to put characters in a reasonable
order regardless of relative positions. This is useful for sets that include extended or up-
per ASCII characters (eg. ISO Latin 1: AAA A A. A. AIE aa a. a a ...).

— Lexical ordering (or dictionary ordering) extends the sorting sequence by interpreting
the meaning of characters.

In real dictionaries, this interpretation can be fairly sophisticated; eg. the number 9 may ap-
pear with the letter n, and punctuation is typically ignored.

Difficulty of Sorting by Sound in Thai

Sorting Thai by sound or tone turns out to be quite difficult. Reasons include:

— Letters are not read in order as written. In Thai, a vowel's sound frequently follows the
next consonant. The word an, which would be transliterated letter-for-letter as Eck, is
instead transcribed as km

— There are more letters than sounds. In Thai, the initial k h (aspirated k) equivalent has
three different letters devoted solely to it; t h has six, s has four, etc. A final t can be
written with eighteen different letters.

— Tone production rules are not unique. Thai derives tone from a combination of the or-
thographic and phonemic characteristics of opening and closing consonants, vowel
length, as well as tone marks.

Difficulties of Ordering Transcriptions
The Haas method [1] is the best approach to Thai transcription. It relies on the International
Phonetic Alphabet (IPA), and brings us close to the idyllic state — one grapheme per pho-
neme — that makes lexical ordering easy. I use it somewhat informally here; my apologies to
the linguists in the audience. However, even Haas transcription has problems when it is used
with standard sorting programs. We'll consider three of them.

The Ordering Problem The IPA is a set of supplemental symbols, rather than an ordinary
alphabet. In effect, IPA is sorted by the coincidental overlap of your IPA font, and whatever
standard set (eg. the Windows sort sequence, or the extended ASCII position numbers) the
computer follows. For example, I use the freely available SIL Premier IPA fonts. Here's how
the extended vowel symbols used to transcribe Thai fit in with the ordinary vowels. Neither
sort has any visible logic, and neither matches the order I find easiest to remember personally.

aeioueaou	 original list
aseiooueu	 Windows sort
eaeiouoae	 UNIX (positional)
aoeaciouti	 my preferred order

Tone marks are scattered randomly through the character layout, and have the same prob-
lem. Their order makes no logical sense — lexical order must be organized externally.

274

The Intrusion Problem Transcribed Thai has 3 exceptions to a one-sound, one-letter rule:

- Ch, and the aspirated consonants kh, ph, and th are shown with two letters (possibly as ch,
kh, ph, and th).

— long vowels are doubled, eg. e/ee or alas.

— the glottal stop is shown with ?, either before or after the vowel.

The two-letter sounds cause a problem I call intrusion — a two-letter consonant can, and
invariably does, appear in the middle of another consonant's dictionary section. For example,
in Thai, initial p is distinct from initial (aspirated) P h. However, an alphabetical sort yields:

pa
	 through	 pe	 .. then

pha	 through	 p he	 .. then
Pi
	 through	 pe	 . . . and so on.

The p entries are split in half by the intruding p h. k, and t have equivalent problems, as do
many of the glottal, short, and long vowels.

The Alternate Character Problem The undotted i character, 1, may be used to avoid con-
flicts with tone marks, eg.:

11, 11 vs. 11,

This wreaks havoc with lexical ordering. Because the undotted i character is in the position
of " in standard character sets, ordinary sorting code handles ii and ii differently.

Tone marks also vary. The SIL IPA set has four versions of each tone mark, designed to
fit appropriately around various characters. Once again, symbols with the same lexical posi-
tion are found in different parts of the collating sequence.

41 	 t	 ti

Part II: the Solution
Thus, sorting Thai begins with transcription, then requires decisions about the order of:

— consonants, including IPA and two-letter consonants like 0 and kh.

— vowels, particularly IPA vowels c a

— vowel length, eg. glottal, short, long.

— tones; for instance, Thai is conventionally ordered mid, low, falling, high, rising.

We must also come up with ways to:

— separate collating and sorting sequences,

— make two-character sequences sort as though they were single characters, and

— temporarily ignore tone marks or substitute characters that confuse sort programs.

Picking an Order for Sounds

Here's a restricted subset of the Thai alphabet that includes only the most regular of the du-
plicated consonant sounds:

frualsoimuuthirlumwmia-r

No Thai letter is used out of order. I can transcribe this 'alphabet' literally as:

kkhojchdtthnbpphfmyrIwsh?oaieueeeo

275

Or, in an easier-to-remember arrangement, no English letter is out-of-order.

aobchdeeefhijkkhlmnoopphrstthutivvy

Suppose we assume that short vowels precede longer ones. All that's left to define is tone
order, which is traditionally:

A	 V	

mid, low, falling, high, rising

Below, I've applied the rule initial consonant / vowel length / tone yields:

	

may	 ITU	 made of	 1	 Thai

	

may	 1 ii	 mile	 4	 dictionary

	

may	 chili	 new	 6	 order

	

may	 1 ij 	no, not	 8

	

m ay	 11111	 burn	 9

	

may	 111	 wood	 5

	

may	 1111J	 silk/question	 7

	

maay	 U1 tl	 measure, much	 2

	

maay	 i1t1	 widowed	 3

	

maay	 Yi 1.I 1(1 	 widow	 11
maay	 11 MU	 to intend	 10

Sorting on Phonemic Signatures

Next, we must transform the information we need — phonemes — into a form ordinary sort
programs can use — single letters. Turning a?, a, aa, b, Ch, d into A, B, C, D, E, F does the
job, because the single upper-case letters are properly ordered in relation to each other.

Instead of editing the original words (that would destroy the useful information they con-
tain) we extract information — the word's phonemic signature. If we prepend the signature
to the word, and then sort, words will be in the order we seek:

Signature	 Original	 Transformation
	At	 a?t	 a? A
	Bt	 at	 a B
	Ct	 aat	 aa C

DBt	 bat	 b D, a B
EBt	 chat	 ch E,	 B
FBt	 dat	 d F, a B

When sorting is done, we throw the signatures away, and keep only the sorted originals.
More formally, we generate signatures and use them as sort keys. This approach is useful

for sorting information, like fingerprint records, that does not easily lend itself to being or-
dered, and can also be applied to various programming problems (see [2]).

The example above has no tones, so one signature suffices. But multiple signatures let
each signature act as the representative of a single sorting characteristic.

Suppose we have a number of characteristics — call them S, T, U — and each character-
istic has alternatives, S,, 52, and so on.

words
SI	 T2	 Ul	 word2

	

T2	 U2	 word3

	

T2	 U3	 wordy

276

All the words with characteristic Si group together. The S1,7,, alternatives fall within this
group, then the Si,T1 U,, alternative (Si , T1 U1), and Sh T2 U„ alternatives (there are three) follow.

In concrete terms we say that our signatures consist of opening consonant and vowel,
vowel length, closing consonant, and tone, eg:

ma	 1	 y	 1	 may	 Ill
ma	 1	 y	 3	 may	 111 U
ma	 2	 y	 3	 mbay	 IJ1LJ

ma	 2	 y	 4	 maay	 111J1U

Each signature's influence depends on its position, left to right. Thai spellings, however dif-
ferent, are only considered if the signatures and the IPA transcriptions are identical.

Part III: Implementation
First, note the ASCII collating sequence (lowest to highest) is:

— all white space, through single blank

! # % &
* +	 . /

— 0 through 9, then : ; < = > ?

— A through Z, then] A

— a through z, then (I }

Deriving Signatures
A variety of techniques are employed to derive signatures from transcriptions:

— Unifying — giving different letters one value (so that i and i might both be i).

— Stripping — removing characters (like tone marks) not relevant to a signature.

— Compression — turning a two-character sequence into a single character (eg. turning kh
and t h into K and T).

— Substitution — giving individual characters more convenient names (eg. referring to c
and 4th as E and U).

— Remapping — relocating non-contiguous characters (like stTuU...) to a sequence that
sorts properly (eg. STUVW).

A few UNIX tools (also available as standalone utilities under DOS) suffice for all tasks.

An Example Alphabet
Consider a simple alphabet that displays all of the full alphabet's problems:

d k kh phwhat we hear a n 0 0 p

nk kh m 0 phEdwhat we type p

The transcription alphabet

Let's assume that we would like to define lexical ordering in the following way: charac-
ters are ordered as listed, single vowels follow doubled vowels, and tone marks appear in or-
der following no tone marks.

The nonsense syllables below are properly ordered. The signatures are left in place; in a
moment, we'll see how they were generated (they are the contents of file s4, below).

277

S3	 S2	 SI	 source	 actual
AB	 AB	 AB	 dE	 de

AB	 AB	 ABy	 dE+	 dé

AB	 AB	 ABz	 dE—	 dê

AB	 ABa	 ABB	 dEE	 dee

AB	 ABa	 AByB	 dE+E	 dee

ABD	 ABD	 ABD	 dEk	 dek

ABD	 ABD	 ABzD	 dE+k	 dek

ABD	 ABaD	 ABBD	 dEEk	 deek

ABD	 ABaD	 AByBD	 dE+Ek	 dek

DCI	 DCaI	 DCCI	 kiip	 kiip

DCI	 DCaI	 DCzCI	 kl—ip

DHI	 DHI	 DHI	 kop	 kop

ECI	 ECI	 ECI	 khip	 khip

Signatures are generated right-to-left, starting with source. 'Extra' information is, in effect,
ignored — it doesn't have to be stripped out.

— SI carries the tone-mark phoneme.

— S2 strips tones, but carries the vowel length and final consonant phonemes.

— S3 strips vowel length, but carries the initial consonant and vowel phonemes.

a marks a doubled vowel, and y or z mark tones. These particular values are chosen be-
cause they are greater, alphabetically, than the upper-case letters used for words. For exam-
ple, BAAD precedes BAD, but BAD comes before BAaD.

If the alphabet includes a glottal stop, a slightly different strategy is used. Below, we rely
on the fact that the digits precede the letters. All three vowel lengths are given a two-
character signature; in S2, note that B9 is glottal, BB is normal, and Ba is long.

	

S3	 S2	 S.1	 actual
	AB	 AB9	 ABy9	 do?

	

AB	 ABB	 ABy	 da

	

AB	 ABa	 AByB	 d6e

Implementation Details

To generate the signatures, we begin with a wholesale transformation, then strip or modify
individual characters as we build signatures.

source -> transliterate > sl
sl -> strip-tones I tag-double-vowels > s2
s2 -> strip-vowel-tags > s3
assemble s3 s2 sl source I sort > s4
s4 -> take-apart > out

All the intermediate files aren't necessary; I've left them to make the code easier to follow.

Transliteration The transliteration step requires several transformations. Some forethought
is required in the transcription alphabet's design — if k and kh are each treated as a single
letter, then h can't be a unique letter in the original alphabet unless k + h is illegal (as it is in
Thai).

278

original de i I kkh noopph —

source d E k kti!I N o p ph+ , —

compressed d E I i kKnNopP+ —

unified E i i k K nNop P+ —

substituted d A i i k K n N y o p P y z

remapped ABCCD E FGH I J yz

The transliteration step

The code below creates file s 1:

sed 's/kh/K/g' < source I 	 compress kh
sed 's/ph/P/g' I	 compress ph
tr "IE+-" "iAyz" I	 unify and substitute
tr "dAikKnNopP" "ABCDEFGHIJ" > sl remap

Strip-Tones, Tag-Double-Vowels Next we create file s2 (my apologies for the sed):

tr -d yz < sl I	 strip the tones
sed 's/\([BCH]\)\l/\la/g' > s2	 tag the doubled vowels

Strip-Vowel-Tags, Assemble, Take-Apart Next we'll strip the vowel tags and create file
53. Using auxiliary files in the next two steps makes the programming a bit clearer.

tr -d a < s2 > s3	 strip the vowel tags

Finally, we put the signatures together, sort, and cut the signatures out:

paste s3 s2 I	 paste the first two
paste - sl I
	 add the third

paste - source I	 add the original data
sort > s4
	

do the work
cut -f4 < s4 > out	 strip off the first 3 fields

Further Work
The method presented here can be modified to accommodate different notions of appropriate
phonemic sorting. We continue to work on additional questions, including:

— deciding what the most easily understood and used phonemic orders are,

— building electronic dictionaries / spelling assistants that are based on these orders,

— developing an easier user-interface for specifying how phonemic signatures should be
extracted and evaluated,

— automatically generating the starting transcription.

References
[1] Haas, Mary. The Thai System of Writing. Spoken Language Services, Inc./American
Council of Learned Societies, 1956.
[2] Bentley, Jon. Programming Pearls Addison-Wesley Publishing Company, Reading,
Massachusetts, 1986.

279

280

	PACLIC10-273.pdf
	PACLIC10-274.pdf
	PACLIC10-275.pdf
	PACLIC10-276.pdf
	PACLIC10-277.pdf
	PACLIC10-278.pdf
	PACLIC10-279.pdf
	PACLIC10-280.pdf

