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Abstract

In this paper we describe all our NMT sys-
tems for the following translation tasks we
participated in: ASPEC (all tasks), Indic Lan-
guages (multilingual tasks) and the Myanmar-
English task. Our team,“NICT-5”, focused on
the utility of bidirectional, recurrently stacked
layered and multilingual models for AS-
PEC, simple domain adaptation approaches
for Myanmar-English and multilingual mod-
els for Indic Languages. In the case of AS-
PEC translation, we noted that a single mul-
tilingual/bidirectional model (without ensem-
bling) has the potential to achieve (near) state-
of-the-art results for all the language pairs.
We also noted that models that use recur-
rently stacking layers do not experience a
large loss in translation quality despite hav-
ing significantly fewer parameters compared
to the vanilla NMT models. An interesting ob-
servation is that systems with the best BLEU
might not be the best in terms of human eval-
uation.

1 Introduction

Neural machine translation (NMT) (Cho et al., 2014;
Sutskever et al., 2014; Bahdanau et al., 2015) has
enabled end-to-end training of a translation system
without needing to deal with word alignments, trans-
lation rules, and complicated decoding algorithms,
which are the characteristics of phrase-based statis-
tical machine translation (PBSMT) (Koehn et al.,
2007). Although vanilla NMT is significantly bet-
ter than PBSMT in resource-rich scenarios, PBSMT
performs better in resource-poor scenarios (Zoph et

al., 2016). By exploiting transfer learning tech-
niques, the performance of NMT approaches can be
improved substantially.

For WAT 2018, we participated as team “NICT-
5” and worked on ASPEC Chinese-Japanese and
English-Japanese translation, UCSY Myanmar-
English translation and Indic multilingual transla-
tion directions. The techniques we focused on for
each translation task can be summarized as below:

• For the ASPEC translation tasks, we mostly re-
lied on multilingual Transformer (Vaswani et
al., 2017) models and experimented with Re-
currently Stacked NMT (RS-NMT) (Dabre and
Fujita, 2018) models in order to determine the
trade-off between compactness of models and
the loss in their performance.

• For the UCSY Myanmar-English translation
task, we tried domain adaptation techniques
such as Mixed Fine Tuning (Chu et al., 2017)
since the the final objective was to achieve high
quality translation for a low-resource domain
(ALT).

• For the Indic multilingual task, we explored the
feasibility of bilingual, N -to-1, 1-to-N and N -
to-N way translation models. We also tried an
approach where we mapped the scripts of all
Indic languages to a common script (Devana-
gari) to see if it helps improve the performance
of a multilingual model.

For additional details of how our submissions are
ranked relative to the submissions of other WAT
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participants, kindly refer to the overview paper
(Nakazawa et al., 2018).

2 NMT Models and Approaches

We will first describe the Transformer which is the
state-of-the-art NMT model we used for our experi-
ments.

2.1 The Transformer
The Transformer (Vaswani et al., 2017) is the current
state-of-the-art model for NMT. It is a sequence-to-
sequence neural model that consists of two compo-
nents, the encoder and the decoder. The encoder
converts the input word sequence into a sequence of
vectors of high dimensionality. The decoder, on the
other hand, produces the target word sequence by
predicting the words using a combination of the pre-
viously predicted word and relevant parts of the in-
put sequence representations. Due to lack of space,
we briefly describe the encoder and decoder as fol-
lows. The reader is encouraged to read the Trans-
former paper (Vaswani et al., 2017) for a deeper un-
derstanding.

Suppose that X and Y are the input and out-
put word sequences where X = [x0, x1, ..., xn] and
Y = [y0, y1, ..., ym]. The objective is to predict the
best word sequence:

Ŷ = argmax
Y

P (Y |X).

The first step is to compute initial high dimensional
vector space representations EX for the input word
sequence X by using its word embeddings where:

Eencoder
X = embeddingencoder(X).

Positional information is also incorporated into the
word embeddings, which has been shown to be im-
portant for good performance. The embeddings,
computed by an embedding layer, are stored in an
embedding matrix in which the number of rows is
equal to the size of the vocabulary of the input se-
quence. These word embeddings are then processed
by N neural network layers composed of self at-
tention, feed-forward layers and normalization sub-
layers which help produce a high-level representa-
tion of the input sequence denoted by SN

X where:

Si
X = Layerencoder(S

i−1
X ),

and S0
X = Eencoder

X . These processing steps de-
scribe the Encoder.

Due to the use of self-attention layer instead of the
traditional recurrent layer, the input sequence can be
processed in parallel, the result of which is signifi-
cantly faster processing because of parallel compu-
tation.

The decoder, on the other hand, predicts one word
at a time by taking into account the previously pre-
dicted words. At each time step i, the decoder takes
the previously predicted word yi−1, computes its
embedding as:

Edecoder
yi−1

= embeddingdecoder(yi−1),

processes this embedding through N layers of self-
attention, cross-attention (to access the relevant in-
formation from the source hidden-state representa-
tions) to give the decoder hidden-state si. si is then
converted into a probability distribution to predict
yi:

yi = argmaxyiP (yi|X, yi−1, yi−2, ..., y0).

The distribution is obtained using a softmax layer as
follows:

P (yi|X, yi−1, yi−2, ..., y0) = softmax(W T × si),

where W is a matrix which maps si to a vector of the
size of the vocabulary of the target sequence. W T ×
si is also known as the logit vector for the ith word
to be predicted, denoted as Li.

2.2 Multilingualism in NMT

In order to train multilingual models using the
Transformer, we used the artificial token based ap-
proach (Johnson et al., 2017) which is also useful
for zero-shot translation. We simply concatenate the
corpora for all translation directions after inserting a
token like “XX” at the beginning of the source sen-
tence, where “XX” is a special token that indicates
the target language such as JA (for Japanese) or EN
(for English). “XX” should be a token which is not
already present in the corpus. We also over-sample
the smaller corpora to match the size of the larger
corpora.
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2.3 Domain Adaptation in NMT

The primary domain adaptation technique we ex-
plored was Mixed Fine Tuning (MFT) (Chu et al.,
2017) since it can be used without any modification
to the model architecture. The approach can be sum-
marized as follows:

• Learn a joint vocabulary for the out-of-domain
and in-domain corpora.

• Train the NMT model on the out-of-domain
corpus only until convergence.

• Resume training the same NMT model on the
combination of out-of-domain and in-domain
corpora1 till convergence.

This method is extremely easy to use.

2.4 Recurrently Stacked Layers in NMT

Recurrently Stacked Layers for NMT (RS-NMT)
(Dabre and Fujita, 2018) proposes to reuse share
the parameters of among all layers of the encoder
or the decoder. A N -layer (encoder-decoder) RS-
NMT has the same number of parameters as a 1-
layer vanilla NMT model. The only major differ-
ence is that the same layer is recurrently stacked N
times for each of the encoder and the decoder. As a
result of recurrently stacking layers, the NMT model
learns to refine the representations of sentences lead-
ing to significantly better performance than a vanilla
1-layer model. A generalized version of this ap-
proach is proposed in the work on the Universal
Transformer (Dehghani et al., 2018). In this work
a 6-layer transformer is recurrently stacked M times
where M is dynamically decided. The major differ-
ence between RS-NMT and Universal Transform-
ers is that the former seeks to reduce the number
of model parameters with minimal loss in perfor-
mance whereas the latter seeks to improve the model
performance over its vanilla counterpart without in-
creasing the number of parameters.

In this paper, we choose an intermediate approach
where we consider a 3-layer transformer and recur-
rently stack it 4 times. We do not opt for the dynamic
recurrent stacking approach for simplicity.

1The in-domain data will be oversampled so that the training
phase sees equal amounts of data from both domains.

Split ASPEC JC ASPEC JE
Train 672,315 3,008,500
Dev 2,090 1,790
Test 2,107 1,812

Table 1: ASPEC dataset splits. The number indicates the
number of lines in the split.

3 Model Training Details

Since we pre-processed all our data according
to the organizer’s guidelines, we do not mention
them here. For all our experiments, we used the
tensor2tensor2 version 1.6 implementation of the
Transformer (Vaswani et al., 2017) model. We
chose this implementation because it is known to
give the state-of-the-art results for NMT. In order to
train multilingual models we used the artificial to-
ken trick used for zero-shot NMT (Johnson et al.,
2017). We always oversample the smaller datasets
to ensure that the training phase sees equal amounts
of data from all datasets. We also modified the
tensor2tensor implementation to train Recurrently
Stacked NMT (RS-NMT) models (Dabre and Fujita,
2018). We used the default hyperparameters in ten-
sor2tensor for all our models with the exception of
the number of training iterations. Unless mentioned
otherwise we use the “base” transformer model hy-
perparameter settings with a 32000 subword vocab-
ulary which is learned using tensor2tensor’s default
subword segmentation mechanism. During training,
a model checkpoint is saved every 1000 iterations.
We averaged the last 10 model checkpoints and used
it for decoding the test sets.

4 ASPEC Task

4.1 Datasets

For the ASPEC (Nakazawa et al., 2016) tasks we
used the official data provided by the organizers.
The objective of the ASPEC task is to push the state-
of-the-art for scientific domain machine translation
for Japanese-English and Japanese-Chinese. The
parallel corpora available, belong to the scientific
domain and are sufficiently large in size. Refer to
Table 1 for an overview of the data splits. For our ex-

2https://github.com/tensorflow/
tensor2tensor
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Task Model Our BLEU Top BLEU BLEU Ranking Human Ranking
English-Japanese Bidirectional 42.87 43.43 2/6 1/5
English-Japanese RS-NMT* 41.91 43.43 - -
Japanese-English Multilingual 29.65 30.59 2/4 1/4
Japanese-English Unidirectional* 28.63 30.59 - -
Chinese-Japanese Multilingual 49.79 49.79 1/2 1/1
Chinese-Japanese MFT* 49.67 49.79 - -
Japanese-Chinese Multilingual 35.99 37.60 2/3 2/2
Japanese-Chinese Vanilla* 35.71 37.60 - -

Table 2: ASPEC task results. Entries with an asterisk mark are the comparative submissions and hence are not
considered in the overall ranking.

Split UCSY ALT
Train 208,638 17,965
Dev - 993
Test - 1,007

Table 3: Myanmar-English dataset splits. The number
indicates the number of lines in the split.

periments we used all the data for ASPEC Japanese-
Chinese but for Japanese-English we used only the
top 1.5 million lines since the bottom half of the cor-
pus is of poorer quality and contains many badly
aligned segments.

4.2 Models Trained

For the ASPEC task we trained vanilla and recur-
rently stacked NMT models for unidirectional trans-
lation. We used shared encoder-decoder vocabular-
ies for multilingual (including bidirectional) models
and for Chinese-Japanese models in order to enable
cognate sharing. Kindly note that in this paper, uni-
directional models can only translate in one direc-
tion and bidirectional models can translate in both
directions. Our usage of the words uni and bidi-
rectional are not related to the bidirectional RNNs
used in the traditional seq2seq models. For vanilla
English-Japanese models we use separate vocabu-
laries because there is no scope for cognate shar-
ing. For each translation direction we submitted two
types of models which are as follows:

• English to Japanese: a. A bidirectional trans-
former using the top 1.5M lines of the English-
Japanese corpus. This model uses the “big”
model hyperparameter setting as defined in the

original paper. b. A RS-NMT model in which
a 3 layer transformer was recurrently stacked 4
times.3 This model was trained using the whole
corpus of 3M lines. Both models were trained
for 300k iterations.

• Japanese to English: a. A multilingual
transformer that uses 1.5M lines of English-
Japanese and the whole Japanese-Chinese cor-
pus. This single transformer model can trans-
late both two and from English and Japanese as
well as Japanese and Chinese. This transformer
also uses the “big” model hyperparameter set-
tings. b. A unidirectional Japanese to English
transformer using the full 3M lines corpus.

• Chinese to Japanese: a. The same multilingual
model used for Japanese to English translation.
b. A model that uses mixed fine tuning by first
training on 3M lines of En-Ja for 200k itera-
tions followed by an additional 100k iterations
on a combined dataset of 3M lines of En-Ja.

• Japanese to Chinese: a. The same multilingual
model used for Japanese to English translation.
b. The vanilla transformer model.

4.3 Results

Refer to Table 2 for an overview of the ASPEC task
results. In general our submissions secured second
rank in terms of BLEU for 3/4 tasks and first rank

3In the original RS-NMT model (Dabre and Fujita, 2018) a
single layer is recurrently stacked N times. As such the number
of parameters is the same as a 1-layer transformer. However
in our case the number of parameters is the same as a 3-layer
transformer.
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Split Bengali Hindi Malayalam Tamil Telugu Urdu Sinhalese
Train 337,428 337,428 359,423 26,217 22,165 26,619 521,726
Dev 500 500 500 500 500 500 500
Test 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table 4: Indic languages dataset splits. The number indicates the number of lines in the split.

in terms of human evaluation for 3/4 tasks. It is
important to note that the best performing submis-
sion (in terms of BLEU) for 3/4 tasks used ensem-
bling (possibly on top of checkpoint averaging) for
decoding whereas our submissions used only check-
point averaging. In the case of Japanese-Chinese,
the submission with the best BLEU used an en-
semble of 10 models. In comparison our submis-
sions involve only one model and hence we be-
lieve that our models are better suited for deploy-
ment in a practical scenario. It is also important
to note that our English-Japanese RS-NMT model
is within 1 BLEU point of our best submission.
This shows that recurrent stacking of layers is quite
formidable and deserves plenty of exploration in the
future. For reference, the number of parameters in
the 6-layer English-Japanese model is 283,313,671
(BLEU 41.31) whereas for the RS-NMT model this
number drops to 217,171,975 (BLEU 41.31). It is
clear that RS-NMT can help create compact models
without loss in translation quality.

5 Myanmar to English Translation Task

5.1 Datasets
The Myanmar-English datasets consist of parallel
corpora from two different domains. The objec-
tive of the Myanmar-English translation task is to
improve the translation quality for the ALT (Asian
Language Treebank) (Riza et al., 2016) which con-
sists of relatively low-resource language pairs. For
this domain the parallel corpus is extremely small.
As such, a larger out-of-domain corpus for the same
language pair also known as the UCSY4 corpus is
provided. Refer to Table 3 for the corpora splits.

5.2 Models Trained
For Myanmar to English translation, we submit-
ted only one model which was trained using mixed
fine tuning (MFT). We first trained a model on the

4http://www.nlpresearch-ucsy.edu.mm/

out-of-domain UCSY data for 100000 iterations fol-
lowed by training for a further 20000 iterations on
a combination of UCSY and ALT data. Since this
is a low-resource setting we used separate encoder-
decoder vocabularies of 16k subwords.

5.3 Results

For Myanmar-English the best BLEU score we ob-
tained was 15.44 using only UCSY and ALT data by
training the model using mixed fine tuning (MFT).
In comparison the best performing submission had a
BLEU of 29.14. It should be noted that this system
used additional monolingual data. Our BLEU based
ranking is 3/6 and our human evaluation based rank-
ing is 3/5. In the future we will explore more sophis-
ticated mechanisms for this language pair and adopt
the use of monolingual corpora which is shown to
be highly effective.

6 Indic Languages Task

6.1 Datasets

The Indic language dataset spans 8 languages, 7 of
which are Indic languages and one of them being
English. The objective of the Indic shared task is
to test the feasibility of multilingualism for low-
resource machine translation for related languages.
The Indic languages involved are Bengali, Hindi,
Malayalam, Tamil, Telugu, Sinhalese and Urdu. The
corpus belongs to the OpenSubtitles domain. Refer
to Table 4 for the corpora splits. Although monolin-
gual corpora were provided, we did not use them.

6.2 Models Trained

We trained the following five types of models:

• Unidirectional models: We trained separate vo-
cabulary models for translating from English
to the Indic languages and from the Indic lan-
guages to English. The vocabulary size was
8k and separate encoder-decoder vocabularies
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Task Model Our BLEU Top BLEU BLEU Ranking Human Ranking
English-Bengali uni 14.55 18.81 - -
English-Bengali En-XX 10.45 18.81 - -
English-Bengali XX-YY 10.39 18.81 - -
English-Hindi uni 26.35 44.08 - -
English-Hindi En-XX 29.65 44.08 2/4 -
English-Hindi XX-YY 26.59 44.08 - 1/4

English-Malayalam uni 16.56 16.56 - -
English-Malayalam En-XX 7.29 16.56 - -
English-Malayalam XX-YY 4.87 16.56 - -

English-Tamil uni 8.74 30.53 - -
English-Tamil En-XX 18.60 30.53 - -
English-Tamil XX-YY 20.39 30.53 2/4 3/3
English-Telugu uni 10.74 41.89 - -
English-Telugu En-XX 25.64 41.89 - -
English-Telugu XX-YY 29.17 41.89 - -
English-Urdu uni 20.21 32.86 - -
English-Urdu En-XX 27.05 32.86 - -
English-Urdu XX-YY 29.05 32.86 - -

English-Sinhalese uni 9.78 18.09 - -
English-Sinhalese En-XX 8.35 18.09 - -
English-Sinhalese XX-YY 7.51 18.09 - -

Table 5: Indic task results for translation from English to Indic Languages. We only consider the ranking of our
submissions with the highest BLEU/human scores. As such, some submissions have a BLEU ranking but not a human
ranking and vice versa. Note that, only English-Hindi, Hindi-English, English-Tamil and Tamil-English translation
directions were submitted for human evaluation.

were used. Due to lack of time required for hy-
perparameter tuning, we trained the models for
100k iterations on the default model setting.

• Multilingual XX-En model: We trained a sin-
gle model to translate from all the Indic lan-
guages to English by combining all the train-
ing data. Since the target language is the same,
this is the only multilingual model that does not
need artificial tokens to indicate the target lan-
guage. We trained this model for 500k itera-
tions.

• Multilingual En-XX model: We trained a sin-
gle model to translate from English to all the In-
dic languages. This is essentially the reverse of
the XX-En model. We also trained this model
for 500k iterations.

• Multilingual XX-YY model: We trained a sin-

gle model to translate from all the Indic lan-
guages to English and vice versa. Unlike the
previous multilingual models, we trained this
model only for 180k iterations due to lack of
time.

• Multilingual Shared Indic Script XX-En
model: This model is similar to the XX-En
model except that the scripts for all the Indic
languages are mapped to a common script. We
used Devanagari as the common script, and
used the Indic NLP Library5 (Kunchukuttan et
al., 2015) for script conversion. As such, this
increases the chance of vocabulary sharing.
Because the training corpus diversity is signifi-
cantly reduced we trained this model for 100k
iterations because it is technically equivalent

5https://github.com/anoopkunchukuttan/
indic_nlp_library/
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Task Model Our BLEU Top BLEU BLEU Ranking Human Ranking
Bengali-English uni 19.17 20.05 - -
Bengali-English XX-En 18.03 20.05 - -
Bengali-English UXX-En 18.82 20.05 - -
Bengali-English XX-YY 16.68 20.05 - -
Hindi-English uni 26.05 32.95 2/4 -
Hindi-English XX-En 31.06 32.95 - -
Hindi-English UXX-En 31.51 32.95 - -
Hindi-English XX-YY 30.21 32.95 - 2/4

Malayalam-English uni 22.87 22.87 - -
Malayalam-English XX-En 14.06 22.87 - -
Malayalam-English UXX-En 15.91 22.87 - -
Malayalam-English XX-YY 10.90 22.87 - -

Tamil-English uni 11.09 24.31 - -
Tamil-English XX-En 21.37 24.31 - -
Tamil-English UXX-En 21.27 24.31 - -
Tamil-English XX-YY 24.31 24.31 1/4 2/4
Telugu-English uni 15.76 33.23 - -
Telugu-English XX-En 29.85 33.23 - -
Telugu-English UXX-En 30.23 33.23 - -
Telugu-English XX-YY 33.23 33.23 - -
Urdu-English uni 20.65 30.84 - -
Urdu-English XX-En 27.88 30.84 - -
Urdu-English UXX-En 26.73 30.84 - -
Urdu-English XX-YY 30.84 30.84 - -

Sinhalese-English uni 21.85 21.85 - -
Sinhalese-English XX-En 18.73 21.85 - -
Sinhalese-English UXX-En 19.19 21.85 - -
Sinhalese-English XX-YY 17.25 21.85 - -

Table 6: Indic task results for translation from Indic Languages to English. We only consider the ranking of our
submissions with the highest BLEU/human scores. As such, some submissions have a BLEU ranking but not a human
ranking and vice versa. Note that, only English-Hindi, Hindi-English, English-Tamil and Tamil-English translation
directions were submitted for human evaluation.

to a unidirectional translation model.

6.3 Results

Refer to Tables 5 and 6 for the results for the Indic
Languages translation task. We give the results for
the unidirectional (uni), multitarget (En-XX), mul-
tisource (XX-En), multilingual shared Indic script
(UXX-En) and multisource multitarget (XX-YY)
models. In case of translation to the Indic languages,
our best submissions was able to secure 2nd rank
(BLEU) for most language pairs. On the other hand,
for translation from the Indic languages, our best

submissions were able to secure 1st rank (BLEU)
for most language pairs. In terms of human evalua-
tion we also managed to secure 2nd rank most of the
times for the language pairs that were submitted.

From our results it is clear that multilingual mod-
els do not work perfectly well for all translation
directions but they do help in improving transla-
tion quality for the low-resource languages (Hindi,
Tamil, Urdu and Telugu). Multilingual models led
to poor performance for the resource rich transla-
tion directions. As expected, vocabulary unification
did lead to slight improvements in translation quality
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and we believe that such approaches deserve further
exploration. Due to lack of time we did not try ad-
vanced multilingual models and training approaches
which we expect will lead to a single multilingual
model that will perform well for all translation di-
rections.

7 Conclusion

In this paper we have described our submissions to
WAT 2018. We managed to obtain near state-of-
the-art results for ASPEC and showed the effective-
ness of multilingual transformers. We also showed
that recurrently stacked NMT models can lead to
high quality models while significantly reducing the
number of model parameters. We explored the util-
ity of mixed fine tuning for Myanmar-English trans-
lation. We also studied the impact of multilingual-
ism in the case of Indic languages translation.

Overall we have observed that multilingualism
leads to significant improvements in translation
quality and reduce the need to train multiple transla-
tion models effectively leading to parameter reduc-
tion. We have also observed that BLEU score based
ranking is mostly inconsistent with human evalua-
tion based ranking, especially for the ASPEC task.
We believe that this calls for innovation into newer
automatic evaluation metrics that correlate well with
human evaluations. In the future we plan to ex-
plore more sophisticated multilingual models which
should help push the state-of-the-art even further.
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