
Long Short-Term Memory for Japanese Word Segmentation

Yoshiaki Kitagawa∗ and Mamoru Komachi
Tokyo Metropolitan University

6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
ace1235813@gmail.com, komachi@tmu.ac.jp

Abstract

This study presents a long short-term memory
(LSTM) neural network approach to Japanese
word segmentation (JWS). Previous studies on
Chinese word segmentation have succeeded
in using recurrent neural networks such as
LSTM and gated recurrent units. However, in
contrast to Chinese, Japanese includes several
character types such as hiragana, katakana,
and kanji, which produce orthographic varia-
tions and increase the difficulty of word seg-
mentation. Additionally, while it is important
to consider a global context, traditional JWS
approaches still rely on local features. To ad-
dress this problem, this study proposes em-
ploying an LSTM-based approach to JWS.

1 Introduction

Word segmentation is a fundamental task of
Japanese language processing. Moreover, word
segmentation errors in East Asian languages (e.g.,
Japanese and Chinese), which lack a trivial word
segmentation process, can cause problems for down-
stream NLP applications. Thus, it is crucial to per-
form accurate word segmentation for the Japanese
language.

To achieve high accuracy, modern Japanese word
segmentation (JWS) methods utilize discriminative
models relying on extensive feature engineering.
However, machine-learning-based methods tend to
require hand-crafted feature templates. Thus, they
suffer from data sparseness. Neural network mod-
els have, therefore, been investigated for various
NLP tasks to address the problem of feature engi-
neering (Liu et al., 2015; Sutskever et al., 2014;

∗Now at Yahoo Japan Corporation.

Socher et al., 2013; Turian et al., 2010; Mikolov et
al., 2013). Neural network models enable the use
of dense feature vectors (i.e., embeddings) that are
learned via representation learning.

Another important problem in JWS corresponds
to context modeling. Traditional JWS methods em-
ploy feature templates to expand local features in a
fixed window. However, global information beyond
the window is not considered. Conversely, recur-
rent neural network (RNN) models grasp long dis-
tance information owing to the use of long short–
term memory (LSTM), achieving state-of-the-art ac-
curacy in Chinese word segmentation (Chen et al.,
2015b). However, it is uncertain whether the LSTM
approach is also effective for JWS because there are
many types of character sets in Japanese that pro-
duce orthographic variations.

Therefore, we propose an LSTM network for
JWS that incorporates character-level embeddings
and long-distance dependency. The main contribu-
tions of this study are as follows.

• We propose an LSTM model for JWS and
investigate methods to utilize sparse features,
such as character type, character n-gram, and
dictionary features.

• The experimental results indicate that the
proposed word segmentation model achieves
comparable performance to conventional ap-
proaches in both token- and sentence-level ac-
curacy with respect to various datasets.

• Our souce code is available at GitHub1.
1https://github.com/ace12358/

WordSegmentation

PACLIC 32

279
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

2 LSTM for Japanese Word Segmentation

Machine-learning-based approaches for word seg-
mentation build a classifier from an annotated cor-
pus to classify the existence of word boundaries
around a target character. In word segmentation,
each character is assigned to several labels, such as
{B, I, E, S}, {B, I, E}, and {B, I} to indicate the
segmentation, where {B}, {I}, {E}, and {S} repre-
sents Begin, Inside, End, and Single, in that order. In
JWS, the most prevalent label set corresponds to {B,
I, E, S}, and the label sets do not significantly affect
the accuracy of our preliminary experiments.

Classification of these labels is performed by run-
ning the Viterbi algorithm over a word lattice (Kudo
et al., 2004; Nakagawa, 2004; Kaji and Kitsure-
gawa, 2013) or by independently performing predic-
tions (Neubig et al., 2011). However, previous ap-
proaches used feature templates to expand window-
based local features. Thus, they suffered data sparse-
ness and a lack of global information in a sentence.
An RNN, such as LSTM, addresses the problem of
the lack of history by using recurrent hidden units,
in which the output at each time depends on that
of the previous time. This method has been suc-
cessfully demonstrated with respect to several NLP
tasks, such as language modeling (Mikolov et al.,
2010) and text generation (Sutskever et al., 2011).

Thus, we propose character-based embeddings
and an LSTM network for JWS. Figure 1 shows an
overview of the proposed framework. The model
is similar to previous studies on CWS (Chen et al.,
2015b) which uses character embeddings. However,
our model also incorporates character-based n-gram
embeddings (character n-gram and character type n-
gram) and a word dictionary sparse feature in addi-
tion to character embeddings.

In the neural architecture, character-based embed-
dings for context characters are extracted via the
lookup table layer and concatenated into a single
vector, xt ∈ RH1 , where H1 is the size of the in-
put layer. Thereafter, xt is passed into the next layer
to perform the linear transformation, W1, followed
by an element-wise activation function, g, such as
sigmoid and tanh functions:

ht = g(W1xt + b1) (1)

where W1 ∈ RH2×H1 , b1 ∈ RH2 , and ht ∈ RH2 .

Additionally, H2 denotes a hyperparameter, which
indicates the number of hidden units in the hidden
layer. b1 denotes a bias vector, and ht denotes the
resulting hidden vector. The final output is obtained
by running a softmax function after a similar linear
transformation, W2, to the hidden vector as follows:

yt = softmax (W2ht + b2) (2)

where W2∈ R|T |×H2 , b2 ∈ R|T |, and yt ∈ R|T |.
Thus, b2 denotes a bias vector, and yt denotes the
distribution vector for each possible label.

2.1 Character-Level Features

This section discusses character-level features, as
shown in Figure 1. This paper introduces charac-
ter embedding, character-type embedding, and their
n-gram for JWS. We describe the character vector,
ct, for JWS below. Formally, the character vector,
ct, is defined as follows:

ct = lt ⊕ et, (3)

where⊕ denotes concatenation of the vectors, and lt
and et denote character embeddings and character-
type embeddings, respectively. These embeddings
are fed to the input layer.

In the following subsections, we discuss three fea-
tures frequently used in JWS, and we describe their
realization as embeddings in the proposed architec-
ture.

2.1.1 Character Embeddings
In a word segmentation task, a character dictio-

nary, C, of size |C| is often created. Traditional
machine-learning approaches that use feature tem-
plates treat each character independently as a one-
hot vector. However, it is natural for a neural net-
work model to represent discrete data as distributed
vectors or embeddings (Bengio et al., 2003; Col-
lobert and Weston, 2008). Representation learning
is an actively studied topic in NLP because it over-
comes the data sparseness problem. Thus, the same
practice is followed to represent each character as a
real-valued vector, vc ∈ Rd, where d is the dimen-
sionality of the vector space. With respect to each
character, the corresponding character embedding,
vc, is selected by a lookup table.

PACLIC 32

280
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Figure 1: An overview of the proposed LSTM for JWS.

2.1.2 Character-Type Embeddings
Character embeddings are extremely effective in

identifying prefixes and postfixes. However, they
can be too sparse when crossing a word boundary.
To address this problem, it is helpful to exploit char-
acter types, such as hiragana, katakana, and kanji
(e.g.,ひらがな，カタカナ，漢字), for JWS (Neu-
big et al., 2011). For example, katakana sequences
tends to correspond to a loan word. A transition
from a character type to another will likely corre-
spond to a word boundary (Nagata, 1999).

2.1.3 Character-Based n-gram Embeddings
In addition to character type, the n-gram is ef-

fective in JWS (Neubig et al., 2011). Thus, the
character-type sequence information is incorporated
as embeddings. Each character is converted to a one-
hot vector corresponding to its character type. A
one-hot vector comprises either hiragana, katakana,
kanji, alphabet, number, symbol, start symbol, or
terminal symbol. The advantages of a deep neu-
ral network include dealing with sparse vectors by
converting them to dense vectors. This enables the
utilization of a sparse feature, such as character tri-
gram. Additionally, a character-based n-gram is ef-
fective for sentence similarity, part-of-speech tag-
ging (Wieting et al., 2016), and for Japanese mor-

phological analysis (Neubig et al., 2011). Therefore,
n-gram is used for character and character-type em-
beddings. More precisely, a one-hot vector is cre-
ated for each unigram, bigram, and trigram. Each
embedding is selected by a lookup table as well as
unigram embeddings.

The embedding vectors lt and et are defined as
follows:

lt = l[t−2:t] ⊕ l[t−1:t] ⊕ l[t] (4)

et = e[t−2:t] ⊕ e[t−1:t] ⊕ e[t] (5)

where l[a:b] denotes the embedding for the strings
from a to b. The same holds for et.

2.2 Incorporating Word Dictionary
Character embeddings, character-type embeddings,
and their n-gram extensions perform an excellent
job with respect to learning character-based fea-
tures from an annotated corpus. However, character-
based JWS models lack word-level information use-
ful in determining the character sequences constitut-
ing a word. Thus, a Japanese morphological ana-
lyzer typically uses a dictionary. It is essential for
a JWS using a word lattice during decoding to use
word-level information such as a unigram and a bi-
gram. However, this is not necessary for character-
based JWS approaches.

PACLIC 32

281
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Figure 2: Example of a dictionary vector.

Notably, it is not trivial to encode dictionary infor-
mation into a neural network architecture. Tsuboi
(2014) suggests that it is ineffective to learn both
dense continuous and sparse discrete vector repre-
sentations in the same layer. Thus, we follow the
same practice to create a sparse dictionary vector.
Whereas, instead of learning embeddings, this is
used for the input to the final output layer, as shown
in Figure 1.

Figure 2 illustrates the creation of a dictionary
vector, comprising three parts, as follows: left-side
feature L, right-side feature R, and inside-feature I .
For example, L2 is activated if a word with a length
corresponding to 2 exists in the dictionary on the
left side of the prediction point. If the length of the
word exceeds a certain threshold, the word length
is cut off with respect to the length. In the study, 4
is adopted as the threshold, following Neubig et al.
(2011). In contrast to L and R, I2 is fired if there
exists a word spanning the boundary and possesses
a length of 2. It should be noted that I is activated
only if the length of the word exceeds 1, based on its
definition. Finally, the feature vectors are concate-
nated to a single vector (e.g., a dictionary vector).

The dictionary vector, dt, is concatenated to the
current hidden vector. It should be noted that the
current hidden vector, ht, is on top of the LSTM
network. Formally, the new hidden vector, h′

t, is
defined as follows.

h′
t = ht ⊕ dt. (6)

2.3 Training
In this study, a cross-entropy error is adopted as a
loss function. Given an output vector, yt, the loss
in a correct distribution corresponding to ct is com-
puted as follows.

loss =
∑
t

−it log yt +
1

2
λ‖θ‖22, (7)

where it denotes the correct label distribution, λ de-
notes a hyperparameter of L2 regularization, and θ
indicates all parameters of the model.

Following (Socher et al., 2013), the diagonal vari-
ant of AdaGrad (Duchi et al., 2011) with mini
batches is used to minimize the objective. The up-
date for the i-th parameter, θt,i, at time step t, is de-
fined as follows.

θt,i = θt−1,i −
α√∑t
t=τ g

2
τ,i

gt,i. (8)

where α denotes the initial learning rate, and gτ de-
notes the gradient at time step τ for parameter θi.

3 Experiments

We evaluated the proposed neural word segmenta-
tion method on several JWS corpora. To evaluate
the neural network architectures, we prepare a feed-
forward network (FFNN) and an RNN for JWS. The
FFNN is illustrated by a dotted line in Figure 1.
Additionally, the RNN uses the same inputs as the
LSTM, whereas it does not use any LSTM units.

PACLIC 32

282
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Table 1: Number of sentences in the corpora.

domain train test

Yahoo! Japan Answers 5,880 496
Yahoo! Japan Blog 7,036 506
White paper 5,471 496
Magazine 12,369 492
Newspaper 16,222 495
Book 9,470 499
BCCWJ All 56,448 2,984

KC All 18,455 1,234

The experiments are separated into two parts.
First, the neural network architectures and features
are compared to previous state-of-the-art methods
on a balanced corpus. Second, the proposed method
is evaluated on a newspaper corpus annotated with a
different segmentation criterion.

3.1 Settings

Datasets. We evaluate the methods with respect
to two different datasets: a popular Japanese cor-
pus, the Balanced Corpus of Contemporary Writ-
ten Japanese (BCCWJ) version 1.1 (Maekawa et al.,
2014); and another widely used Japanese corpus, the
Kyoto University Corpus (KC), version 4.0. The
BCCWJ is composed of various domains, whereas
KC only includes the newswire domain. The de-
tails of the corpora are shown in Table 1. The train
and test split of BCCWJ follow, per the Project Next
NLP2. We used a short unit word as the segmenta-
tion standard, and we adopted the same train and test
split of KC used in previous studies (Kudo et al.,
2004; Uchimoto et al., 2001).

With respect to word-level features, Neubig et al.
(2011) do not use any external dictionary, except the
dictionary created from the training corpus. Hence,
the same scenario is adopted, and all the words in
the training corpus are added. However, words ap-
pearing only once in a corpus are omitted to prevent
overfitting of the training data, as described in (Neu-
big et al., 2011). To analyze the effect of the dictio-
nary feature, we recreate a larger dictionary created
from both training and test sets. This is termed as
“gold dict” in Table 3.

2https://goo.gl/QCxxwB

Tools. In the experiments, we use the state-of-the-
art JWS tool, KyTea (ver.0.4.6) 3, which implements
(Neubig et al., 2011) on this dataset.4 We train a
KyTea model using the provided scripts for train-
ing. This internally creates a dictionary, as described
above. Pretrained KyTea models adopt their own
word segmentation criterion, extended from that of
BCCWJ. Thus, KyTea models are retrained to en-
sure a fair comparison.

Additionally, we implement neural network-
based JWS models, including FFNN, RNN, and
LSTM, by using a neural-network framework,
Chainer (ver 1.4.0)5(Tokui et al., 2015).

3.2 Hyperparameters

We investigate several parameter combinations in-
spired by previous studies (Chen et al., 2015b) in
our preliminary experiments. The complete set of
parameters used in the study is shown in Table 2.
The BCCWJ development set is used for tuning hy-
perparameters.

Pretraining. Based on the preliminary experi-
ments and the early convergence of the learning
curve on the development set, we do not perform
pretraining for character embeddings.

Window size. Preliminary experiments indicate
that a window size of 5 is better than others in terms
of both accuracy and training time. Thus, window
size 5 is selected.

Dimension of character and character-type em-
beddings. The dimension of character embed-
dings is fixed by following (Chen et al., 2015b). In
contrast, we search six configurations of character-
type embeddings: 1, 3, 5, 10, 20, and 50. We set
the hidden units of character-type embeddings to 10
because of the preliminary experiments.

Label set. In CWS, the label set {B, I, E, S} is
often used. In contrast, various label sets are adopted
in JWS. We explore three label sets and show that
{B, I, E, S} is slightly better than the others.

3http://www.phontron.com/kytea/
4Morita et al. (2015) used a different segmentation standard

than ours, thus it is not directly applicable to our dataset.
5http://chainer.org

PACLIC 32

283
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Table 2: The hyperparameter set of the study.

hyperparameter value

window size 5
character embeddings 100
character type embeddings 10
hidden layer size 150
label set {B, I, E, S}
learning rate 0.1
coefficient of L2 regularization 0.0001

Learning rate. In this task, the learning rate
largely affects accuracy. A small learning rate (such
as 0.01) degrades accuracy and significantly affects
learning time. Thus, a learning rate of 0.1 is selected
for all the experiments.

3.3 Results
Table 3 shows the experimental results for the BC-
CWJ Corpus. In the KC, the LSTM+ctype+n-
gram+dictsys model obtained an F1 of 96.47,
whereas the baseline KyTea 0.4.6 achieved an F1 of
96.21. Our LSTM-based method outperformed the
state-of-the-art method (Neubig et al., 2011). Table
4 illustrates the performance of the two methods per
domain breakdown. The accuracy of the proposed
method, in terms of token-level F1 and sentence-
level accuracy, exceeds those of the others in four
out of six domains, resulting in improvements in the
overall performance. These four domains contain
more orthographic variants than the other two.

4 Discussion

Models. Table 3 shows that LSTM is superior to
FFNN and RNN by using the same feature set (char-
acter embeddings only). It demonstrates the effec-
tiveness of modeling a context by LSTM.

Character-type embeddings. Comparing LSTM
with LSTM + ctype, F1 improves by 0.25 points.
The result shows that character-type embeddings are
useful in JWS.

Dictionary feature. The addition of a dictionary
feature to LSTM + ctype improves F1 by 0.37. This
result shows that dictionary feature is effective in
JWS. However, the addition of the dictionary fea-
ture to LSTM + ctype + n-gram does not result in

Table 3: Experimental results of JWS on BCCWJ. Ctype
= character-type embeddings, and n = 1, 2, 3.

Methods F1

FFNN 96.53
RNN 96.46
LSTM 97.00
LSTM+ctype 97.25
LSTM+ctype+dictsys 97.37
LSTM+ctype+{uni,bi}gram 98.05
LSTM+ctype+n-gram 98.41
LSTM+ctype+n-gram+dictsys 98.42
LSTM+ctype+n-gram+dictgold 98.67

KyTea 0.4.6 98.34

any notable difference. We assume that character-
based n-gram embeddings subsume the dictionary
feature because the dictionary is created from the
training corpus, (dictsys). Additional experiments
using the gold dictionary created from the test cor-
pus, (dictgold), support this hypothesis6. Our find-
ings are similar to Zhang et al. (2018), who em-
ployed n-gram based feature templates and dictio-
naries for CWS.

n-gram embeddings. A comparison of LSTM +
ctype with LSTM + ctype + n-gram indicates n-
gram embeddings significantly improve the perfor-
mance of the model by a large margin. There are
several attempts to incorporate neural representa-
tions into a conditional random field (CRF) (Ma and
Hovy, 2016; Lample et al., 2016; Peters et al., 2017),
all of which use bidirectional LSTM as encoders
for sequence labeling tasks. In contrast, we apply
simple n-gram embeddings, which can be easily ob-
tained using a raw corpus. Our findings are in line
with the rich pretraining method for neural CWS
(Yang et al., 2017).

5 Error Analysis

5.1 Effect of Domain
To determine the characteristics of the proposed
method, we conducted an error analysis by compar-
ing the proposed method with KyTea, with respect

6The singletons of the combined corpus are removed while
creating the gold dictionary. Thus the test corpus may still con-
tain words that are not in the gold dictionary.

PACLIC 32

284
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Table 4: Token-level and sentence-level performance on
various domains in the BCCWJ dataset.

Domain F1 # incorrect sent.
KyTea Ours KyTea Ours

Y! Answers 98.38 98.44 75 69
Y! Blog 99.75 99.73 98 97
White paper 99.20 99.08 81 84
Book 98.15 98.28 82 91
Magazine 96.70 97.25 102 90
Newspaper 98.19 98.46 96 75

All 98.34 98.42 534 506

Table 5: An example of the error in this study and KyTea.
The character “|” indicates the word boundary, and the
asterisk indicates the incorrect part.

Method Example

Ours エルマー |*とりゅう |の |絵 |で
KyTea エルマー |と |りゅう |の |絵 |で

Ours うち |*がまんま |その |環境 |です |。
KyTea うち |が |まんま |その |環境 |です |。

Ours 七百 |六十 |一 |の |ため池 |など
KyTea 七百 |六十 |一 |*のため |池 |など

Ours 思う |と |うんざり |です |．
KyTea 思う |*とうんざり |です |．

to different domains. Thus, we computed the F1 for
each domain of BCCWJ, and counted the number
of incorrect sentences. Table 4 summarizes token-
level and sentence-level comparisons between the
proposed model and KyTea.

We selected Magazine that exhibited the largest
margin in token-level F1 as the successful domain,
and selected Book and White paper having the
largest margin in sentence-level evaluation as the un-
successful domains.

Magazine. This domain contains colloquial ex-
pressions as well as formal expressions. Hiragana
occupies a substantial portion of this corpus because
of the colloquial expressions. Furthermore, F1 for
this domain is the lower in the two methods. The
results indicate that hiragana exhibits a poor perfor-
mance. However, the proposed method is more ro-
bust than KyTea in this domain. This may be caused

by the modeling of contextual information because
the hiragana sequence tends to fall outside of the lo-
cal window size.

Book. This domain typically includes named enti-
ties, such as a company name. This corpus is bal-
anced in terms of the proportion of character types.
Generally, the proposed model tends to be robust
for compounds of different character types (e.g.,
Famiポート (Fami Port) multimedia vending ma-
chine), whereas Neubig et al. (2011)’s model cor-
rectly classified words comprising unique character
types (e.g.ポストドクター (Postdoc)). The differ-
ence between token-level and sentence-level accu-
racy highlights the characteristic of these methods.
The proposed method typically produces fewer er-
rors, whereas it does not consistently perform word
segmentation across the corpus.

White paper. This domain comprises of official
documents published by the government. Thus,
kanji covers a substantial portion of the corpus. Ad-
ditionally, the number of characters per sentence is
high. In this domain, the proposed method is only
inferior to Neubig et al. (2011), with respect to both
F1 and the number of incorrect sentences. This is
potentially caused by the long-sequence introduced
noise to the LSTM-based models.

5.2 Example
To investigate the characteristics of the proposed
method from a different perspective, we demon-
strate actual examples of word segmentation. Table
5 shows a comparison of four examples for the cur-
rent study and KyTea 0.4.6. The proposed method
possesses two characteristics.

The first characteristic is that strings with the
same character type tend to form a word unit. This
characteristic is demonstrated by the first and sec-
ond examples. In the first example, “と (and)”
and “りゅう (dragon)” are different words. How-
ever, they are of the same character type “Hira-
gana.” Thus, they are incorrectly combined to form
a fake word. In the second example, “が (NOM)”
and “まんま (just)” are also incorrectly connected.
This type of error tends to occur when the charac-
ter type corresponds to “Hiragana”, which includes
many high-frequency ambiguous single-character
particles.

PACLIC 32

285
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Another characteristic of this method is that
words with different character types tend to be
broken by KyTea at the position where a charac-
ter type is changed. This characteristic is demon-
strated by the third example. In this example,
“ため池 (storage reservoir)” is a single word con-
sisting of “ため (storage)” and “池 (reservoir)”,
whereas KyTea fails to recognize the word because
“ため” and “池” are of different character types.
In contrast, the proposed method correctly identifies
the word.

However, there are cases where contrary results
are indicated. In the fourth example, “と (and)” and
“うんざり (fed up)” correspond to different words
of the same character type “Hiragana”. An analy-
sis of the first and second examples indicates that
the proposed method tends to form a fake word that
comprises of the same character type. However, it
yields a correct segmentation result. There is still
room for improvement by using a dictionary to ad-
dress the problem of spurious words. The upper
bound of the proposed method is shown in Table 3.

6 Related Works

In JWS, a supervised learning approach is widely
used. A popular method in JWS involves creating a
word lattice by using a dictionary and using Viterbi
decoding (Kudo et al., 2004; Sassano, 2002). This
approach is known to yield accurate results by con-
sidering the sequence of words, whereas it is not ro-
bust if training data differ from test data (Neubig
et al., 2011). Another popular approach employs
pointwise prediction by using a local window (Neu-
big et al., 2011; Neubig and Mori, 2010). However,
both approaches do not consider the global context
because they use feature templates of a fixed length.
Additionally, they both suffer from feature sparse-
ness.

Recently, deep neural network architectures have
been widely used for CWS tasks (Chen et al., 2015b;
Chen et al., 2015a; Pei et al., 2014; Zhang et al.,
2016; Cai and Zhao, 2016). These approaches are
mainly divided into two types: structured predic-
tion model (Zhang et al., 2016; Cai and Zhao, 2016)
and pointwise prediction model (Chen et al., 2015b;
Chen et al., 2015a; Pei et al., 2014). However, a
deep neural network approach requires high compu-

tational costs compared to previous approaches. In
JWS, Morita et al. (2015) proposed integrating an
RNN language model into JWS by interpolating it
with traditional JWS. As opposed to using recurrent
neural architecture as side information, word seg-
mentation in Japanese is directly learned by using
LSTM.

Furthermore, a neural network approach for nor-
malization was explored (Kann et al., 2016; Ikeda et
al., 2016). Kann et al. (2016) proposed a character-
based encoder-decoder model and achieved state-
of-the-art accuracy for the task of canonical mor-
phological segmentation. Because their method
was based on unsupervised learning, it could be
learned at a low cost. However, it was necessary
to adjust word segmentation criteria to human an-
notation. Ikeda et al. (2016) also presented an
encoder-decoder model for Japanese text normaliza-
tion. However, their model was only as good as con-
ventional CRF, although it was trained with a large-
scale artificially created corpus.

7 Conclusion

In this paper, we presented an LSTM neural network
approach to JWS. We proposed learning Japanese-
specific features, such as character-type and charac-
ter n-gram, as embeddings, and dictionary features
as a sparse vector. The proposed method was shown
to achieve comparable accuracy to state-of-the-art
systems on various domains.

In JWS, it is important to deal with colloquial
expressions that are frequently found in dialogue-
based conversations and web text (Saito et al., 2014;
Sasano et al., 2013; Kaji and Kitsuregawa, 2014).
It is expected that deep neural architectures, such as
convolutional neural networks, may be effective for
this scenario because of their ability to learn robust
representations of characters and words (Ling et al.,
2015).

Acknowledgments

This work was partly supported by the Microsoft
Research Collaborative Research (CORE) Projects.
We thank anonymous reviewers for suggestions and
comments, which helped in improving the paper.

PACLIC 32

286
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

Deng Cai and Hai Zhao. 2016. Neural word segmenta-
tion learning for Chinese. In ACL, pages 409–420.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuanjing
Huang. 2015a. Gated recursive neural network for
Chinese word segmentation. In ACL-IJCNLP, pages
1744–1753.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu, and
Xuanjing Huang. 2015b. Long short-term memory
neural networks for Chinese word segmentation. In
EMNLP, pages 1197–1206.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In ICML, pages
160–167.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159.

Taishi Ikeda, Hiroyuki Shindo, and Yuji Matsumoto.
2016. Japanese text normalization with encoder-
decoder model. In WNUT, pages 118–126.

Nobuhiro Kaji and Masaru Kitsuregawa. 2013. Effi-
cient word lattice generation for joint word segmen-
tation and pos tagging in Japanese. In IJCNLP, pages
153–161.

Nobuhiro Kaji and Masaru Kitsuregawa. 2014. Accurate
word segmentation and POS tagging for Japanese mi-
croblogs: Corpus annotation and joint modeling with
lexical normalization. In EMNLP, pages 99–109.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In EMNLP, pages 961–
967.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to Japanese
morphological analysis. In EMNLP, pages 230–237.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
NAACL, pages 206–270.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso,
Ramon Fermandez, Silvio Amir, Luis Marujo, and
Tiago Luis. 2015. Finding function in form: Com-
positional character models for open vocabulary word
representation. In EMNLP, pages 1520–1530.

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015. Multi-timescale long short-
term memory neural network for modelling sentences
and documents. In EMNLP, pages 2326–2335.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directinal LSTM-CNNs-CRF.
In ACL, pages 1064–1074.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu Ogiso,
Takehiko Maruyama, Hideki Ogura, Wakako Kashino,
Hanae Koiso, Masaya Yamaguchi, Makiro Tanaka,
and Yasuharu Den. 2014. Balanced corpus of con-
temporary written Japanese. Language Resources and
Evaluation, 48(2):345–371.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Interspeech,
volume 2, page 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In NIPS, pages 3111–3119.

Hajime Morita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2015. Morphological analysis for unsegmented
languages using recurrent neural network language
model. In EMNLP, pages 2292–2297.

Masaaki Nagata. 1999. A part of speech estimation
method for Japanese unknown words using a statisti-
cal model of morphology and context. In ACL, pages
277–284.

Tetsuji Nakagawa. 2004. Chinese and Japanese word
segmentation using word-level and character-level in-
formation. In ACL, page 466.

Graham Neubig and Shinsuke Mori. 2010. Word-based
partial annotation for efficient corpus construction. In
LREC, pages 2723–2727.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In ACL-HLT, pages
529–533.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014. Max-
margin tensor neural network for Chinese word seg-
mentation. In ACL, pages 293–303.

Matthew E. Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models. In
ACL, pages 1756–1765.

Itsumi Saito, Kugatsu Sadamitsu, Hisako Asano, and
Yoshihiro Matsuo. 2014. Morphological analysis for
Japanese noisy text based on character-level and word-
level normalization. In COLING, pages 1773–1782.

Ryohei Sasano, Sadao Kurohashi, and Manabu Okumura.
2013. A simple approach to unknown word processing
in Japanese morphological analysis. In IJCNLP, pages
162–170.

Manabu Sassano. 2002. An empirical study of active
learning with support vector machines for Japanese
word segmentation. In ACL, pages 505–512.

PACLIC 32

287
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013. Parsing with compositional vec-
tor grammars. In ACL, pages 455–465.

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In ICML, pages 1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
NIPS, pages 3104–3112.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clay-
ton. 2015. Chainer: a Next-Generation open source
framework for deep learning. In NIPS Workshop.

Yuta Tsuboi. 2014. Neural networks leverage corpus-
wide information for part-of-speech tagging. In
EMNLP, pages 938–950.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In ACL, pages 384–394.

Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara.
2001. The unknown word problem: a morphological
analysis of Japanese using maximum entropy aided by
a dictionary. In EMNLP, pages 91–99.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. In EMNLP, pages
1504–1515.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural word
segmentation with rich pretraining. In ACL, pages
839–849.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. In ACL,
pages 421–431.

Qi Zhang, Xiaoyu Liu, and Jinlan Fu. 2018. Neural
networks incorporating dictionaries for Chinese word
segmentation. In AAAI, pages 5682–5689.

PACLIC 32

288
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

