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Abstract

This paper presents methods to predict re-
trieval terms from relevant/surrounding words
or descriptive texts in Japanese by using deep
learning methods, which are implemented
with stacked denoising autoencoders (SdA),
as well as deep belief networks (DBN). To
determine the effectiveness of using DBN
and SdA for this task, we compare them
with conventional machine learning methods,
i.e., multi-layer perceptron (MLP) and sup-
port vector machines (SVM). We also com-
pare their performance in case of using three
regularization methods, the weight decay (L2
regularization), sparsity (L1 regularization),
and dropout regularization. The experimen-
tal results show that (1) adding automatically
gathered unlabeled data to the labeled data for
unsupervised learning is an effective measure
for improving the prediction precision, and (2)
using DBN or SdA results in higher prediction
precision than using SVM or MLP, whether or
not regularization methods are used.

1 Introduction

Existing Web search engines have very high re-
trieval performance as long as the proper retrieval
terms are input. However, many people, particularly
children, seniors, and foreigners, have difficulty de-
ciding on the proper retrieval terms for represent-
ing the retrieval objects,1 especially in searches

1For example, according to a questionnaire admin-
istered by Microsoft in 2010, about 60% of users
had difficulty deciding on the proper retrieval terms.
(http://www.garbagenews.net/archives/1466626.html)
(http://news.mynavi.jp/news/2010/07/05/028/)

related to technical fields. Support systems are
in place for search engine users that show suit-
able retrieval term candidates when clues such as
their descriptive texts or relevant/surrounding words
are given by the users. For example, when the
relevant/surrounding words “computer”, “previous
state”, and “return” are given by users, “system re-
store” is predicted by the systems as a retrieval term
candidate. It is therefore necessary to develop var-
ious domain-specific information retrieval support
systems that can predict suitable retrieval terms from
relevant/surrounding words or descriptive texts in
Japanese.

In recent years, on the other hand, deep learn-
ing/neural network techniques have attracted a great
deal of attention in various fields and have been suc-
cessfully applied not only in speech recognition (Li
et al., 2013) and image recognition (Krizhevsky et
al., 2012) tasks but also in NLP tasks including mor-
phology & syntax (Billingsley and Curran, 2012;
Hermann and Blunsom, 2013; Luong et al., 2013;
Socher et al., 2013a), semantics (Hashimoto et al.,
2013; Srivastava et al., 2013; Tsubaki et al., 2013),
machine translation (Auli et al., 2013; Liu et al.,
2013; Kalchbrenner and Blunsom, 2013; Zou et al.,
2013), text classification (Glorot et al., 2011), infor-
mation retrieval (Huang et al., 2013; Salakhutdinov
and Hinton, 2009), and others (Seide et al., 2011;
Socher et al., 2011; Socher et al., 2013b). Moreover,
a unified neural network architecture and learning
algorithm has also been proposed that can be ap-
plied to various NLP tasks including part-of-speech
tagging, chunking, named entity recognition, and se-
mantic role labeling (Collobert et al., 2011). How-
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ever, there have been no studies on applying deep
learning to information retrieval support tasks. It is
therefore necessary to confirm whether deep learn-
ing is more effective than other conventional ma-
chine learning methods in this task.

Two objectives were cited above. One was to
develop an effective method for predicting suit-
able retrieval terms and the other was to deter-
mine whether deep learning is more effective than
other conventional machine learning methods, i.e.,
multi-layer perceptron (MLP) and support vector
machines (SVM), in such NLP tasks. On this ba-
sis, Ma et al. (2014) proposed a method to predict
retrieval terms in computer-related fields using ma-
chine learning methods with deep belief networks
(DBN) (Hinton et al., 2006; Lee et al., 2009; Ben-
gio et al., 2007; Bengio, 2009; Bengio et al., 2013).
In small-scale experiments they showed that using
DBN resulted in higher prediction precision than us-
ing either a multi-layer perceptron (MLP) or sup-
port vector machines (SVM). To evaluate their pro-
posed method more reliably, the first thing we must
do is scale up the experiments. In general, it is not
easy to obtain large training data, particularly la-
beled data for supervised learning. Fortunately, deep
learning consists of both unsupervised learning and
supervised learning, and unlabeled data can be col-
lected relatively easily. Second, since a number of
regularization methods (Srivastava et al., 2014) have
been adopted for improving the generalization per-
formance of neural networks, we also need to con-
duct evaluations when regularization is used.

This study is an enhanced version of the pre-
vious work of Ma et al. (2014), and the retrieval
terms were confined to computer-related fields as
before. We implemented deep learning not only with
the DBN as done in the previous work of Ma et
al. (2014), but also with stacked denoising autoen-
coders (SdA) (Bengio et al., 2007; Bengio, 2009;
Bengio et al., 2013; Vincent et al., 2008; Vincent
et al., 2010). We conducted extensive experiments
in which a large amount of unlabeled data was au-
tomatically collected from the Web (as a result, the
amount of data and the number of labels used in this
study were about ten times larger than those used in
the previous study (Ma et al., 2014)), and then we
compared the performance between DBN and SdA,
and between DBN/SdA and conventional machine

learning methods, in the respective cases of using or
not using regularization methods, i.e., weight decay
(L2 regularization), sparsity (L1 regularization), and
dropout regularization.

Experimental results show that using SdA
achieves the highest prediction precision among all
the methods and that using both DBN and SdA pro-
duces higher prediction precision than that achieved
using either MLP or SVM, when regularization
methods are not used. On the other hand, when reg-
ularization methods are used MLP and DBN per-
formance is improvement in some cases, whereas
no performance improvement can be found in SdA.
Whether or not regularization methods are used,
however, the order of superiority among SdA, DBN,
and MLP remains unchanged. The experimental re-
sults also show that adding automatically gathered
unlabeled data to the labeled data for unsupervised
learning is an effective measure for improving the
prediction precision.

2 Data

In this section, we describe how the training and test-
ing data were obtained and how the feature vectors
of the inputs were constructed from the data for ma-
chine learning.

2.1 Labeled Data
For supervised learning and testing, a labeled data
set consisting of pairs of inputs and their responses
(or correct answers) — in our case, pairs of the rel-
evant/surrounding words or descriptive texts and re-
trieval terms — is needed. The responses are typi-
cally called labels in supervised learning, so we call
the retrieval terms labels here. Table 1 gives exam-
ples of these pairs, where the “Relevant/surrounding
words” are those extracted from descriptive texts in
accordance with the steps described in Subsection
2.3.

A total of 1,234 pieces of data labeled with 100
different labels (i.e., 1,234 pairs of inputs and labels)
were manually collected from 22 computer termi-
nology Web sites.

2.2 Unlabeled Data
Unlabeled data can be used for unsupervised learn-
ing and are obtained from the Web in an automatic
manner. We respectively combine five words or
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Labels
(Retrieval
terms)

Inputs (Descriptive texts or relevant/surrounding words; translated from Japanese)

Graphics
board

Descriptive text Also known as: graphics card, graphics accelerator, GB, VGA. While
the screen outputs the picture actually seen by the eye, the screen only
displays as commanded and does not output anything if it does not receive
a command. The graphics board is the device that outputs the commands.
Two types of data exist that the graphics board needs to process on the
PC: 2D (planar data) and 3D (three-dimensional data).

Relevant/surrounding
words

screen, picture, eye, displays, as commanded, command, device, two
types exist, data, process, on the PC, 2D, planar data, 3D, three-
dimensional data.

Descriptive text A device that provides independent functions for outputting or inputting
video as signals on a PC or various other types of computers in the form
of an expansion card (expansion board). The drawing speed, resolution,
and 3D performance vary according to the chip and memory mounted on
the card.

Relevant/surrounding
words

independent, functions, outputting, inputting, video, signals, PC, various
other types, computer, expansion card, expansion board, drawing speed,
resolution, 3D performance, chip, memory, mounted, card

Main
memory

Descriptive text A device that stores data and programs on a computer. Also known as
the ‘primary memory device’. Since main memory uses semiconductor
elements to electrically record information, its operation is fast and it can
read and write directly to and from the central processing unit (CPU).
However, it has a high cost per unit volume and so cannot be used in
large quantities.

Relevant/surrounding
words

device, stores, data, programs, on a computer, primary memory device,
main memory, uses, semiconductor elements, electrically, record, opera-
tion, fast, read and write directly, central processing unit, CPU, cost, per
unit volume, used, in large quantities.

Descriptive text Main memory is a device that temporarily stores data on a PC. Increasing
the volume of the main memory is important in terms of increasing PC
performance.

Relevant/surrounding
words

main memory, device, temporarily, stores, data, PC, volume, perfor-
mance

Table 1: Examples of input-label pairs in the corpus.

parts of phrases (toha, “what is”), (ha, “is”),
(toiumonoha, “something like”),

(nitsuiteha, “about”), and (noim-
iha, “the meaning of”), on the labels to form the re-
trieval terms (e.g., if a label is

(gurafikku boudo, “graphics board”), then the
retrieval terms are (gu-
rafikku boudo toha, “what is graphics board”),

(gurafikku boudo ha, “graphics
board is”), etc.) and then use these terms to obtain
the relevant Web pages by a Google search. Be-
cause data gathered in this way might have incorrect
labels, i.e., labels that do not match the descriptive

texts, we use them as unlabeled data. We obtained
25,000 pieces of data (i.e., inputs) in total.

2.3 Word Extraction and Feature Vector
Construction

Relevant/surrounding words are extracted from de-
scriptive texts in steps (1)–(4) below, and the inputs
are represented by feature vectors in machine learn-
ing constructed in steps (1)–(6): (1) perform mor-
phological analysis on the labeled data that are used
for training and extract all nouns, including proper
nouns, verbal nouns (nouns forming verbs by adding
the word (suru, “do”)), and general nouns; (2)
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Figure 1: An example of deep neural networks consisting of DBN or SdA.

connect the nouns successively appearing as single
words; (3) extract the words whose appearance fre-
quency in each label is ranked in the top 30; (4) ex-
clude the words appearing in the descriptive texts of
more than 20 labels; (5) use the words obtained in
the above steps as the vector elements with binary
values, taking value 1 if a word appears and 0 if not;
and (6) morphologically analyze all data described
in Subsections 2.1 and 2.2, and construct the feature
vectors in accordance with step (5).

3 Deep Learning and Regularization

Deep learning consists of unsupervised learning for
pre-training to extract features and supervised learn-
ing for fine-tuning to output labels. Deep learning
can be implemented by two typical approaches: us-
ing deep belief networks (DBN) (Hinton et al., 2006;
Lee et al., 2009; Bengio et al., 2007; Bengio, 2009;
Bengio et al., 2013) and using stacked denoising
autoencoders (SdA) (Bengio et al., 2007; Bengio,
2009; Bengio et al., 2013; Vincent et al., 2008; Vin-
cent et al., 2010). The same supervised learning
method can be used with both of these approaches;
i.e., both approaches can be implemented with a
single-layer or multi-layer perceptron or other tech-
niques (linear regression, logistic regression, etc.),
while a different unsupervised learning method is
used; i.e., a DBN is formed by stacking restricted

Boltzmann machines (RBM), and an SdA is formed
by stacking denoising autoencoders (dA) using a
greedy layer-wise training algorithm. In this work,
we use SdA as well as DBN, both of which use lo-
gistic regression for supervised learning.

Figure 1 shows an example of deep neural net-
works composed of three RBM or dA for pre-
training and a supervised learning device for fine-
tuning. Naturally the number of RBM/dA is change-
able as needed. As shown in the figure, the hid-
den layers of the earlier RBM/dA become the visible
layers of the new RBM/dA.

A number of regularization methods have been
proposed to prevent overfitting and to improve the
generalization performance. Weight decay (L2 reg-
ularization) is a method to prevent the weights from
becoming too large by adding the sum of the squared
weights to an error function, and sparsity (L1 reg-
ularization) is a method to help select features in
sparse feature spaces by adding the sum of the ab-
solute values of weights to an error function, which
leads to many of the weights becoming zero. In con-
trast, dropout (Srivastava et al., 2014) is a method
to train different models for each piece of a training
data set by randomly removing units with probabil-
ity p from input and hidden layers. At test time, all
units are then always present (not removed) and their
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Machine
learning
methods

Hyperparameters Values

DBN structure (hidden
layers)

662, 992-662, 1103-882-6622, 1985, 1985-1985, 1985-1985-
1985, 2646, 1985-2646, 1764-2205-2646

ε of pre-training 0.05, 0.1, 0.5
ε of fine-tuning 0.05, 0.1, 0.5
epoch of pre-
training

10, 50, 100

stop of fine-tuning when the training error (average of 0/1 loss) is below 0.03
SdA structure (hidden

layers)
662, 992-662, 1103-882-662, 1985, 1985-1985, 1985-1985-
1985, 2646, 1985-2646, 1764-2205-2646

ε of pre-training 0.05, 0.1, 0.5
ε of fine-tuning 0.05, 0.1, 0.5
epoch of pre-
training

10, 50, 100

stop of fine-tuning when the training error (average of 0/1 loss) is below 0.03
MLP structure (hidden

layers)
662, 992-662, 1103-882-662, 1985, 1985-1985, 1985-1985-
1985, 2646, 1985-2646, 1764-2205-2646

ε 27 divisions between 10−2-100 in a logarithmic scale
stop of training when the training error (average of 0/1 loss) is below 0.03

SVM (Lin-
ear)

C 243 divisions between 10−6-106 in a logarithmic scale

SVM
(RBF)

C 16 divisions between 10−4-104 in a logarithmic scale

γ 15 divisions between 10−4-104 in a logarithmic scale
Bernoulli
Naı̈ve
Bayes

additive smoothing 122 divisions between 10−6-100 in a logarithmic scale

learning of prior
probability

True, False

Table 2: Hyperparameters for grid search used in the comparative experiments of different training data sets and
different machine learning methods without regularization.

weights are multiplied by 1-p.

2As an example, the structure (hidden layers) 1103-882-662,
shown as bold in the table, refers to a DBN with a 1323-1103-
882-662-100 structure, where 1323 and 100 respectively refer to
dimensions of the input and output layers. These figures were
set not in an arbitrary manner. The first three structures are de-
creasing (pyramid-like) size and all hidden layers were set to
3/6, 4/6, 3/4, and 5/6 times smaller than that of the input layer,
i.e., 662 = 1323×3/6, 882 = 1323×4/6, 992 = 1323×3/4,
and 1103 = 1323 × 5/6. The last three structures are in-
creasing (upside down pyramid) size and all hidden layers were
set to 8/6, 9/6, 10/6, and 12/6 times larger than that of the in-
put layer, i.e., 1764 = 1323 × 8/6, 1985 = 1323 × 9/6,
2205 = 1323 × 10/6, and 2646 = 1323 × 12/6. The middle

4 Experiments

4.1 Experimental Setup
We used three data sets with different amounts of
data (i.e., 1,134 labeled data; 1,134 labeled data
+ 13,000 unlabeled data; and 1,134 labeled data +
25,000 unlabeled data) for unsupervised learning,
the same 1,134 labeled data for supervised learning,
and the remaining 100 labeled data for testing. The
three structures were set in accordance with the recommenda-
tions of (Bengio, 2012) that using the same size works gener-
ally as well as or better than using a decreasing (pyramid-like)
or increasing (upside down pyramid) size.
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Figure 2: Average precision values obtained using different training data without regularization.

dimension of the feature vectors constructed from
the 1,134 labeled training data in accordance with
the steps in Subsection 2.3 was 1,323.

The optimal hyperparameters of the various ma-
chine learning methods used were determined by a
grid search using 5-fold cross-validation on train-
ing data. To avoid unfair bias toward DBN/SdA
during cross-validation due to DBN/SdA having
more hyperparameters than MLP/SVM, we divided
MLP/SVM hyperparameter grids more finely than
that of the DBN/SdA so that they had the same
hyperparameter combinations (hyperparameter sets)
as those of DBN/SdA. Also, to avoid unfair bias
toward DBN/SdA/MLP with regularization during
cross-validation due to they having more hyperpa-
rameters than those without regularization, we di-
vided DBN/SdA/MLP with no regularization hy-
perparameter grids more finely than those of the
DBN/SdA/MLP with regularization so that they had
the same hyperparameter combinations as those of
DBN/SdA/MLP with regularization.

Table 2 shows the hyperparameters for grid search
used in the comparative experiments of different
training data sets and different machine learning
methods without regularization. We therefore had
243 hyperparameter sets in total for these experi-
ments. On the other hand, hyperparameters for grid
search used in the comparative experiments with and
without regularization are not shown in a table be-
cause of space limitations. In these experiments, the

1 5 10 15 20 25 30
Top N

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82
A
v
e
ra

g
e
 p

re
c
is

io
n

DBN

SdA

MLP

SVM(Linear)

SVM(RBF)

BNB

Figure 3: Average precision values obtained using differ-
ent methods without regularization.

hyperparameters of DBN/SdA/MLP without regu-
larization differ from those in Table 2. The differ-
ences were due to the above-cited measure we took
to avoid unfair bias. As a result, we had 2,187 hy-
perparameter sets in total for these experiments.

4.2 Results
Figure 2 compares the testing data precision ob-
tained with DBN and SdA when using different
training data sets. The precision values are averages
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N=1 N=5 N=10
BNB 0.773 0.772 0.770
MLP 0.780 0.789 0.790
SVM (Linear) 0.807 0.807 0.804
SVM (RBF) 0.717 0.719 0.716
DBN 0.793 0.811 0.808
SdA 0.810 0.817 0.818

Table 3: Average precisions values obtained using different methods without regularization.
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Figure 4: Comparison of average precision values obtained with and without regularization.

when using the top N sets of the hyperparameters in
ascending order of the cross-validation errors, with
N varying from 1 to 30. As shown in the figure, the
precision of both DBN and SdA can be improved
by adding the unlabeled data to the labeled data as
training data, and both DBN and SdA have higher

precision when using a larger amount of unlabeled
data.

Figure 3 compares the testing data precision val-
ues obtained when using the largest data set (1,134
labeled data + 25,000 unlabeled data) for unsuper-
vised learning, when using different learning meth-
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N=1 N=5 N=10
BNB 0.773 0.773 0.773
MLP 0.787 0.791 0.791
MLP with L1 0.790 0.793 0.792
MLP with L2 0.787 0.795 0.794
MLP with Dropout 0.780 0.777 0.780
SVM (Linear) 0.807 0.809 0.807
SVM (RBF) 0.730 0.737 0.735
DBN 0.823 0.819 0.803
DBN with L1 0.800 0.803 0.803
DBN with L2 0.817 0.813 0.811
DBN with Dropout 0.817 0.815 0.810
SdA 0.803 0.811 0.813
SdA with L1 0.800 0.801 0.803
SdA with L2 0.803 0.805 0.803
SdA with Dropout 0.793 0.792 0.789

Table 4: Average precision values obtained using different methods with and without regularization.

ods and Bernoulli Naı̈ve Bayes (BNB), which is
used as a baseline. We can see at a glance from the
figure that the performance of SdA is superior to that
of DBN and that both DBN and SdA are generally
superior to BNB, MLP, and SVM. We should point
out that the results for SVM (RBF) are not indicated
in the figure because the precision values were lower
than 0.74. Table 3 lists the specific average preci-
sion values obtained using different learning meth-
ods when N=1, 5, and 10.

Figure 4 and Table 4 compare the testing data
precision values for MLP, DBN, and SdA with and
without regularization3. The figure and table show
that the performance of MLP and DBN improved in
some cases by using regularization, whereas no per-
formance improvement can be found for SdA. How-
ever, both DBN and SdA outperformed BNB, MLP
and SVM whether regularization was used or not.

5 Conclusion

We presented methods to predict retrieval terms
from relevant/surrounding words or descriptive texts
in Japanese by using deep belief networks (DBN)

3It should be noted that the precision values obtained with-
out regularization (shown in Figure 4 and Table 4) differ from
those shown in Figure 3 and Table 3. This is because different
numbers of hyperparameter sets were used for grid searching
between the two experiments as described in Subsection 4.1.

and stacked denoising autoencoders (SdA). Experi-
mental results based on a relatively large scale con-
firmed that (1) adding automatically gathered unla-
beled data to the labeled data for unsupervised learn-
ing was an effective measure for improving the pre-
diction precision, and (2) using either DBN or SdA
definitely achieved higher prediction precision than
that obtained using multi-layer perceptron (MLP),
whether weight decay (L2 regularization), sparsity
(L1 regularization), or dropout regularization was
used. Both DBN and SdA achieved higher preci-
sion than Bernoulli Naı̈ve Bayes (BNB) and support
vector machines (SVM).

In the future, we plan to start developing var-
ious practical domain-specific systems that can
predict suitable retrieval terms from the rele-
vant/surrounding words or descriptive texts.
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