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Abstract. In this paper, we proposed a novel approach for Tibetan word segmentation using
the conditional random field. We reformulate the segmentation as a syllable tagging problem.
The approach labels each syllable with a word-internal position tag, and combines syllable(s)
into words according to their tags. As there is no public available Tibetan word segmenta-
tion corpus, the training corpus is generated by another segmenter which has an F-score of
96.94% on the test set. Two feature template sets namely TMPT-6 and TMPT-10 are used and
compared, and the result shows that the former is better. Experiments also show that larger
training set improves the performance significantly. Trained on a set of 131,903 sentences,
the segmenter achieves an F-score of 95.12% on the test set of 1,000 sentences.
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1 Introduction
During the 7th Century AD, Thume Sambota reputedly devised a script for Tibetan based on the
Devanagari model. At present, Tibetan script is used to write both Tibetan language and Dzongkha
(Bhutanese) language. The former is a language spoken by about 6 million people in China, India,
Bhutan, Sikkim, Ladakh and Nepal, while the later is spoken by about 130,000 people in Bhutan
as a national and official language.

Just like Chinese, Tibetan text is written without natural word delimiters, so word segmentation
is an essential, fundamental and foremost step in Tibetan language processing. Researchers mainly
use maximum matching method and some grammar rules to segment Tibetan text at present.

In this paper, we reformulate Tibetan word segmentation as a syllable tagging problem, and
propose an approach using the conditional random field (CRF) for Tibetan word segmentation.
The paper is organized as follows: In Section 2 we recall related work on Tibetan word segmen-
tation and Chinese word segmentation methods by character tagging. In Section 3, we simply
introduce Tibetan script. We propose the approach in Section 4. Then, in Section 5 we make
experiments to evaluate the segmenter, compare it with other Tibetan segmenters. Section 6 con-
cludes the paper.

2 Related Work
In this section, we first recall the research history and current situation on Tibetan/Dzongkha word
segmentation. We also recall research on Chinese word segmentation by character tagging which
we have drawn inspiration from.
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2.1 Tibetan/Dzongkha Word Segmentation

Chen et al. (2003a; 2003b) proposed a method based on case auxiliary words and continuous fea-
tures to segment Tibetan text. Caizhijie (2009a; 2009b) designed and implemented the Banzhida
Tibetan word segmentation system based on Chens method, using reinstallation rules to identify
Abbreviated Words. Qi (2006) proposed a three level method to segment Tibetan text. Sun et al.
(2009; 2010) researched Tibetan Automatic Segmentation Scheme and disambiguation method of
overlapping ambiguity in Tibetan word segmentation. Dolha et al. (2007), Zhaxijia et al. (2007),
Cairangjia (2009), Gyal and Zhujie (2009) made researches on the word categories and annotation
scheme for Tibetan corpus and the part-of-speech tagging set standards.

Norbu et al. (2010) described the initial effort in segmenting the Dzongkha scripts. They
proposed an approach of Maximal Matching followed by bigram techniques. Experiment shows
that it achieves an overall accuracy of 91.5% on all 8 corpora in different domains. Chungku et al.
(2010) described the application of probabilistic part-of-speech taggers to the Dzongkha language,
and proposed a tag set containing 66 tags which is applied to annotate their Dzongkha corpus.

Models which are used in Chinese word segmentation, such as HMM, ME, CRF, need to be
trained with corpus. However, there is no public available corpus for Tibetan word segmentation
at present. So people mainly use maximum matching method based on dictionary in Tibetan word
segmentation(Chen et al., 2003a; Chen et al., 2003b; Caizhijie, 2009a; Caizhijie, 2009b; Sun et
al., 2009; Sun et al., 2010), accompanying with some grammar rules sometimes.

2.2 Chinese Word Segmentation by Character Tagging

Xue reformulated Chinese word segmentation as a tagging problem (Xue and Converse, 2002;
Xue, 2003; Xue and Shen, 2003), which is a reform of Chinese word segmentation. The approach
uses the maximum entropy tagger to label each Chinese character with a word-internal position
tag, and then combines characters into word according to their tags. Ng and Low (Ng and Low,
2004; Low et al., 2005) used the same method in their segmenter.

Peng et al. (2004) first used the CRF for Chinese word segmentation by treating it as a bi-
nary decision task, such that each character is labeled either as the beginning of a word or the
continuation of one.

Tseng et al. (2005) presented a Chinese word segmentation system submitted to the closed
track of Sighan bakeoff 2005. This segmenter uses a conditional random field sequence model
which provides a framework to use a large number of linguistic features such as character identity,
morphological and character reduplication features.

To give a comprehensive comparison of Chinese segmentation on common test corpora, two
International Chinese Word Segmentation Bake-offs were held in 2003 and 2005, and there were
12 and 23 participants respectively (Sproat and Emerson, 2003; Emerson, 2005). In all of proposed
methods, character based tagging method quickly rose in two Bakeoffs as a remarkable one with
state-of-the-art performance. As reported by Emerson (2005), the results of Bakeoff-2005 shows
a general trend to a decrease in error rates from 3.9% to 2.8% compared to the results of Bakeoff-
2003. Especially, two participants, Ng (Ng and Low, 2004; Low et al., 2005) and Tseng (Tseng et
al., 2005) gave the best results in almost all test corpora.

Zhao (2006a; 2006b) considered both feature template selection and tag set selection, instead
of feature template focused only method. They made an empirical comparison study of perfor-
mance among different tag sets, and found that there is a significant performance difference as
different tag sets are selected. Based on the proposed method, their system gave the state-of-the-
art performance several years ago. They also proposed a criterion called “average weighted word
length distribution” to choose tag set.

In this paper, we will adopt the method used in Chinese word segmentation by tagging to
segment Tibetan text.
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3 Tibetan Script at a Glance

3.1 Delimiters in Tibetan

The Tibetan alphabet is syllabic, like many of the alphabets of India and South East Asia. Each
letter has an inherent vowel /a/. Other vowels can be indicated using a variety of diacritics which
appear above or below the main letter. A syllable contains one or up to seven character(s). Sylla-
bles are separated by a marker known as “tsheg”, which is simply a superscripted dot. Linguistic
words are made up of one or more syllables and are also separated by the same symbol, “tsheg”,
thus there is a lack of word boundaries in the language. Consonant clusters are written with special
conjunct letters. Figure 1 shows the structure of a Tibetan word which is made up of two syllables
and means “show” or “exhibition”.

འ�མས་�ན་
Prefix

Root Letter

Tsheg

Subscribed 

Letter

Vowel Superscribed 

Letter

Suffix

Secondary 

Suffix

Root 

Letter

Vowel

Suffix

Tsheg

Figure 1: Structure of a Tibetan word.
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Yesterday man rich this house expensive an bought did .

Yesterday this rich man bought an expensive house. 

Figure 2: A Tibetan sentence and its translation.

Tibetan sentence contains one or more phrase(s), which contain one or more words. Another
marker known as “shed” indicates the sentence boundary, which looks like a vertical pipe. Figure
2 shows a Tibetan sentence.

3.2 Abbreviated Syllables

In Tibetan text, some words, including “”, “ས”, “ར”, “འང”, “འམ”, “”(We call them abbreviation
marker (AM) in this paper), can glue to the previous word without a syllable delimiter “tsheg”,
which produce many abbreviated syllables. For example, when the genitive case word “” follows
the word “ལ་” (king), we dont put a “tsheg” between them and get the fused form “ལ་” (k-
ing[+genitive]), in which “” is an abbreiated syllable. When the ergative case word “ས” follows
the word “ང་” (we), it forms “ང་ས” (we[+ergative]), in which “ས” is an abbreviated syllable. In
the above two examples, either abbreviated syllable should be broken into two parts while seg-
menting, and the left part has to be combined with the previous syllable(s) to form a word, while
the right part is a 1-syllable word. In addition, the word before the AM can be 1-syllable word. For
instance, if “་” follows “ང” (I), it forms “ང་” (I [+genitive]), and the abbreviated syllable should
be broken into two 1-syllable words.

4 Proposed Method

4.1 Reformulating Tibetan Word Segmentation as a Syllable Tagging Problem

Just like Chinese hanzi which is analysed by Xue (2003), many Tibetan syllables can also occur
in different positions within different words. Table 1 shows how the Tibetan syllable “ཁ་” (mouth)
can occur in four different positions.

Table 1: The Tibetan syllable can occur in multiple word-internal positions.

Position Example Meaning Tag
Word by itself ཁ་ mouth S
Begin ཁ་གསབ་ supplement B
Middle ་ཁ་ཤས་ someone M
End ་ཁ་ ferry E

Before applying the machine-learning algorithm, we convert the segmented words in the corpus
into a tagged sequence of Tibetan syllables. We tag each syllable with one of the four tags, B
(Begin), M (Middle), E (End) and S (Single) depending on its position within a word.
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• It is tagged B if it occurs on the left boundary of a word, and forms a word with the syllable(s)
on its right side.

• It is tagged M if it occurs in the middle of a word.

• It is tagged E if it occurs on the right boundary of a word, and forms a word with the
syllable(s) on its left side.

• It is tagged S if it forms a word by itself.

As presented in section 3.2, Abbreviated syllable should be broken into two parts, thus we need
another two tags ES (End and Single) and SS (Single and Single):

• It is tagged ES if it comes from a multiple-syllable word and an AM.

• It is tagged SS if it comes from a single-syllable word and an AM.

Then tags for the syllable “ཁ་” in the former example are shown in the last column in Table 1.
Then we can use the tags to label Tibetan word. The usage of the tags on words in different

length is shown in Table 2. Using the above tags, the Tibetan sentence in (a) can be tagged as (c),

Table 2: Usage of the tag set.

Word Type Example Tag Sequence Word Type Example Tag Sequence
1-syllable ཁ་ S 1-syllable + AM ངས་ SS
2-syllable ཁ་གསབ་ B-E 2-syllable + AM གནས་པ་ B-ES
3-syllable ་ཁ་ཤས་ B-M-E 3-syllable + AM མ་ས་པའམ་ B-M-ES
4-syllable ས་ད་ལ་ང་ B-M-M-E N/A N/A N/A

and the segmentation result is in (d):

(a) ང་ས་་གས་ང་གས་་་ལ་དབང་བ་ལམ་གས་དང་ལ་བན་བ་ད་་་ན་མཐའ་འངས་ས་ད།
(b) We have always followed the principles of socialist public ownership and distribution ac-

cording to work.

(c) ང་/B ས་/ES ་/B གས་/M ང་/M གས་/E ་/S ་/B ལ་/M དབང་/M བ་/M ལམ་/M གས་/E དང་/S ལ་/S བན་/S
བ་/S ད་/S ་/S ་/B ན་/E མཐའ་/B འངས་/E ས་/S ད/S །/S

(d) ང་/ ས་/ ་གས་ང་གས་/ ་/ ་ལ་དབང་བ་ལམ་ གས་/ དང་/ ལ་/ བན་/ བ་/ ད་/ ་/ ་ན་/ མཐའ་འངས་/ ས་/ ད/ །/
4.2 Tag Set Selection
In the former subsection, we presented our basic idea with a tag set B, M, E, S, ES, SS. In this
subsection, we will decide how many tags to use. In Chinese word segmentation, people used
different tag sets as shown in Table 3.

Table 3: Definitions of different tag sets.

Tag set Tags Words in tagging
2-tag B, E B, BE,BEE, ...
4-tag B, M, E, S S, BE,BME, BMME, ...
5-tag B, B2,M, E, S S, BE,BB2E, BB2ME, BB2MME, ...
6-tag B, B2, B3,M,E, S S, BE,BB2E, BB2B3E,BB2B3ME, BB2B3MME, ...

Zhao et al. (2006b) proposed an effective method to choose the best tag set. They used a criterion
called “average weighted word length distribution” to decide the tag set. They define Lk as follow:

Lk =
1

N

K∑

i=k

i × Ni (1)
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where Lk is the average weighted word length for all i ≥ k; Ni is the word count with word length
i, and K is the maximum word length in the corpus. N is the total word count. Then L1 is the
average weighted word length of the whole corpus.

Statistics on 8 Chinese word segmentation corpora shows that the average weighted word
lengths of the 8 corpora are between 1.51 and 1.71, thus they chose a 6-tag set in their sys-
tem. It can represent a 5 characters context window which can contain 3 words in average:
(1.51, 1.71) × 3 = (4.53, 5.13). Experiments show that the 6-tag set is more effective when it
acts in concert with an appropriate template(Zhao et al., 2006a; Zhao et al., 2006b).

Table 4: Statistical data on Tibetan corpus.

Word Length Lk Cumulative frequency Word Length Lk Cumulative frequency
1 1.5294 0.5735 4 0.1432 0.9946
2 0.9559 0.9396 5 0.0307 0.9975
3 0.2238 0.9665 6 0.0161 0.9994

Base on this method, we made statistics on Tibetan corpus, and the data are shown in Table 4.
In the corpus, the average weighted word length is 1.5294, which is also in the interval of [1.51,
1.71], so the 6-tag set is also suitable to Tibetan, and it can label 99.75% words in the corpus with
different tags to every syllable in each word.

Table 5: Usage of the 8-tag set.

Word Type Example Tag Sequence
1-syllable ཁ་ S
2-syllable ཁ་གསབ་ B − E

3-syllable ་ཁ་ཤས་ B − B2 − E

4-syllable ས་ད་ལ་ང་ B − B2 − B3 − E

5-syllable ག་ད་་་གནས་ B − B2 − B3 − M − E

6-syllable ་ལ་དབང་བ་ལམ་གས་ B − B2 − B3 − M − M − E
1-syllable + AM ངས་ SS

2-syllable + AM གནས་པ་ B − ES
3-syllable + AM མ་ས་པའམ་ B − B2 − ES

4-syllable + AM འཛམ་ང་གམ་པ་ B − B2 − B3 − ES

As analysed in former subsection, we need another 2 tags ES and SS for abbreviated syllables.
Actually, it forms an 8-tag set: B, B2, B3, M, E, S, ES, SS. The usage of the 8-tag set on words
in different length is shown in Table 5. With the 8-tag set, the Tibetan sentence mentioned in the
former subsection is tagged as (e):

(e) ང་/B ས་/ES ་/B གས་/B2 ང་/B3 གས་/E ་/S ་/B ལ་/B2 དབང་/B3 བ་/M ལམ་/M གས་/E དང་/S ལ་/S
བན་/S བ་/S ད་/S ་/S ་/B ན་/E མཐའ་/B འངས་/E ས་/S ད/S །/S

4.3 CRF Tagger for Tibetan

Maximum Entropy (ME) tagger was used in early character-based tagging for Chinese word seg-
mentation (Xue and Converse, 2002; Xue, 2003; Xue and Shen, 2003; Ng and Low, 2004; Low et
al., 2005), In recent years, more and more people choose linear-chain CRF as the learning model
in their studies (Peng et al., 2004; Tseng et al., 2005; Zhao et al., 2006a; Zhao et al., 2006b).

CRF is firstly introduced into language processing by Lafferty (2001). Peng et al. (2004) first
used this framework for Chinese word segmentation by treating it as a binary decision task, such
that each Chinese character is labeled either as the beginning of a word or not.
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The probability assigned to a label sequence for a syllable sequence by a CRF is:

pλ(Y |W ) =
1

Z(W )
exp

(∑

t∈T

∑

k

λkfk(yt−1, yt,W, t)

)
(2)

where Y = yi is the label sequence for the sentence, W is the sequence of unsegmented syllables,
Z(W ) is a normalization term, fk is a feature function, and t indexes into syllables in the label
sequence.

4.4 Feature Templates

The probability model and corresponding feature function is defined over the set H × T , where
H is the set of possible contexts (or any predefined condition) and T is the set of possible tags.
Generally, a feature function can be defined as follow:

f(h, t) =

{
1, if h = hi and t = tj
0, otherwise

(3)

where hi ∈ H and tj ∈ T .

Table 6: The two template sets TMPT-6 and TMPT-10.

Template Set Type Feature Function
Unigram Cn, n = −1, 0, 1 The previous, current and next syllable

TMPT-6 Bigram CnCn+1, n = −1, 0 The previous (next) syllable and current syllable
C−1C1 The previous syllable and next syllable
Cn, n = −1, 0, 1 The previous, current and next syllable

Unigram C−2 The syllable before the previous syllable
C2 The syllable after the next syllable

TMPT-10 CnCn+1, n = −1, 0 The previous (next) syllable and current syllable
Bigram C−1C1 The previous syllable and next syllable

C1C2 The next two syllables
C−2C−1 The previous two syllables

In Chinese word segmentation by character tagging, their are two often used template sets (Xue
and Converse, 2002; Xue, 2003; Xue and Shen, 2003; Ng and Low, 2004; Low et al., 2005; Peng et
al., 2004; Tseng et al., 2005; Zhao et al., 2006a; Zhao et al., 2006b), namely TMPT-6 and TMPT-
10, which are shown in Table 6. In this work, we use and compare the two template sets to see their
effect on the segmentation results. Note that there is a slight difference, the character “C” in the
templates denotes a Tibetan syllable rather than a character like in Chinese word segmentation.

5 Experiments and Results

In this paper, we evaluate the approach by the Precision (P), Recall (R) and F-score (F1). Their
definitions are the same as which are used in Chinese word segmentation. We used the CRF++
toolkit 0.54 from sourceforge http://crfpp.sourceforge.net.

5.1 Corpora

At present, there is no public available Tibetan segmentation corpus. In out experiments, the
training set are machine-generated, and the test set is manually segmented.

Test Set: We randomly selected 1000 out of more than 230,000 Tibetan sentences from our
Tibetan text corpus which consists of several political books and many news stories, legal texts
and articles, then manually segmented them to form the test set.
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Combining methods used by Chen (2003a, 2003b), Caizhijie (2009a, 2009b) with Sun (2009,
2010), we implemented a Tibetan word segmenter (SegT). Experiment on the test set shows that
the precision, recall and the F-score are 96.99%, 96.91% and 96.94% respectively. SegT is used
to generate the training set.

Corpus A: We get 1990 web pages in the domain of Tibetan arts, news, notice, religious, tra-
ditional culture, and history from the website http://tb.tibet.cn, and get 64,419 Tibetan
sentences after preprocessing, which takes 9,739 K bytes in UTF-8 encoding plain text.

Corpus B: We get another 3292 web pages in the domain of news from another website http:
//tb.chinatibetnews.com. The preprocessing is similar to Training set A. and we get
67,484 Tibetan sentences which takes 18,372 K bytes in UTF-8 encoding plain text.

With SegT, the sentences are segmented into words to form the training set. We haven’t made
any manual corrections. As a machine-generated corpus, it includes about 3% words which are
not correctly segmented. The two training set will be used to inspect the effect of training set scale
change on the segmentation performance.

5.2 Comparison of TMPT-6 and TMPT-10
While training the model with the command crf learn, we tried different values of the two param-
eters c and f . The former (c) trades the balance between overfitting and underfitting. The results
will significantly be influenced by this parameter. The latter (f ) sets the cut-off threshold for the
features. CRF++ uses the features that occurs no less than f times in the given training data.

We set f = 2 and change the value of c, make the training and test on TMPT-6 and TMPT-10
respectively. We assign c with the values from 1.0 to 10.0 with a step length of 1.0. The data are
shown in Table 7 and Figure 3. The F-score is the highest one at c = 4.0 on both template sets.
Figure 3 shows that the F-scores are significantly higher on TMPT-6 than on TMPT-10, which is
similar to the result in Chinese word segmentation.

Table 7: F-scores with different values of c on TMPT-6 and TMPT-10.

TMPT-6 TMPT-10
c P(%) R(%) F1(%) P(%) R(%) F1(%)

1.0 92.44 93.67 93.05 92.26 93.37 92.81
2.0 92.57 93.71 93.13 92.39 93.33 92.86
3.0 92.55 93.72 93.13 92.42 93.49 92.95
4.0 92.58 93.70 93.14 92.46 93.50 92.98
5.0 92.54 93.66 93.10 92.40 93.45 92.93
6.0 92.57 93.65 93.10 92.38 93.40 92.88
7.0 92.50 93.47 92.98 92.42 93.40 92.90
8.0 92.57 93.63 93.10 93.34 93.34 92.84
9.0 92.51 93.53 93.02 92.39 93.39 92.89

10.0 92.45 93.48 92.96 92.39 93.41 92.90
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Figure 3: F-scores on TMPT-6 and TMPT-10.
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Figure 4: Performance with different settings.

5.3 Effect of Training Set Scale
As we get a better performance on TMPT-6 than TMPT-10, we make further experiments on it. We
make the training and test with different f , c and training sets. The data are shown in Table 8 and
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Figure 4. With f = 2, we get the highest F-score (93.22%) at c = 4.9 on Corpus A (S-2). With
the same f and c, we train the segmenter with Corpus B, and the performance improves slightly
(S-3). Then we use both Corpus A and Corpus B in the training, and get significant performance
improvement (S-4). The best performance is achieved at f = 1 and c = 4.0.

Table 8: Performance of CRF-SegT with different settings.

Setting Training Set f c P(%) R(%) F1(%)
S-1 Corpus A 2 4.0 92.58 93.70 93.14
S-2 Corpus A 2 4.9 92.67 93.78 93.22
S-3 Corpus B 2 4.9 93.16 93.58 93.37
S-4 Corpus A+B 2 4.9 94.63 94.98 94.80
S-5 Corpus A+B 1 4.9 94.84 95.04 94.94
S-6 Corpus A+B 1 10.6 95.09 95.15 95.12

5.4 Comparison with other segmenters

We collected the test data of several Tibetan segmenters from related papers, and they are shown
in Table 9. Chen and Sun evaluate their segmenters only by accuracy (Recall actually), so we can
compare them only by recall. Compared with them, CRF-SegT outperforms only two of these
sgementers. However, these segmenters are evaluated on different test sets, so it’s not much mean-
ingful to directly compare the Recalls here. All the segmenters are using maximum-matching
method based on dictionary except our CRF-SegT. All of them have inherent weakness on seg-
mentation disambiguation and Out-Of-Vocabulary word identification. Our CRF-SegT doesn’t
have those weakness. Considering these factors and the low quality of the training corpus, our
approach is effective and acceptable though it doesn’t have the highest F-score compared with
other Tibetan segmenters.

Table 9: Comparison of different Tibetan/Dzongkha segmenters.

Sentence Count Word Count P(%) R(%) F1(%)
Chen 2003a N/A N/A N/A ≥ 0.96 N/A
Chen 2003b 500 5890 N/A 97.21 N/A
Sun 2009 435 4067 N/A 87.02 N/A
Norbu 2010 N/A 714 N/A 91.50 N/A
Our/SegT 1000 13977 96.99 96.91 96.94
Our/CRF-SegT 1000 13977 94.09 95.15 95.12

As collected by Zhao et al. (2006b), the F-scores of a state-of-art Chinese segmenter on most
of 8 corpora are up to 95.3%-97.4%. Compared with them, CRF-SegT achieves a lower F-score. It
mainly results from the low quality of the training corpus. As the F-score of SegT and CRF-SegT
are 0.9694 and 0.9512 respectively, it means the latter 0.9512/0.9694 = 0.9812 fits the former.
Thus, the CRF-SegT fits the training corpus at a percentage of 98.12%. It’s already greater than
the upper bound of the interval 95.3%-97.4%, which shows that the result is acceptable.

6 Conclusion

In this paper, we reformulate Tibetan word segmentation as a syllable tagging problem and im-
plemented a Tibetan word segmenter (CRF-SegT) which is trained by the CRF model on a corpus
generated by another Tibetan word segmenter (SegT). Two feature template sets namely TMPT-6
and TMPT-10 are used and compared, and the result shows that the former is better. Experi-
ments also show that larger training set improves the performance significantly. Trained on a set
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of 131,903 sentences, the segmenter achieves an F-score of 95.12% on the test set of 1,000 sen-
tences. At present, almost all Tibetan segmenters are using maximum matching method based on
dictionary except the proposed one. All of them have inherent weakness on segmentation disam-
biguation and Out-Of-Vocabulary word identification. The proposed approach doesn’t have those
weakness. What is more, our segmenter is test on a larger test set. Considering these factors, our
approach is effective and acceptable.
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